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ABSTRACT
As interest in genetic resequencing increases, so does the need for effective mathe-
matical, computational, and statistical approaches. One of the difficult problems in
genome annotation is determination of precise positions of transcription start sites.
In this paper we present TransPrise—an efficient deep learning tool for prediction of
positions of eukaryotic transcription start sites. Our pipeline consists of two parts: the
binary classifier operates the first, and if a sequence is classified as TSS-containing
the regression step follows, where the precise location of TSS is being identified.
TransPrise offers significant improvement over existing promoter-predictionmethods.
To illustrate this, we compared predictions of TransPrise classification and regression
models with the TSSPlant approach for the well annotated genome of Oryza sativa.
Using a computer equipped with a graphics processing unit, the run time of TransPrise
is 250 minutes on a genome of 374 Mb long. The Matthews correlation coefficient
value for TransPrise is 0.79, more than two times larger than the 0.31 for TSSPlant
classification models. This represents a high level of prediction accuracy. Additionally,
the mean absolute error for the regression model is 29.19 nt, allowing for accurate
prediction of TSS location. TransPrise was also tested in Homo sapiens, where mean
absolute error of the regression model was 47.986 nt. We provide the full basis for the
comparison and encourage users to freely access a set of our computational tools to
facilitate and streamline their own analyses. The ready-to-use Docker image with all
necessary packages, models, code as well as the source code of the TransPrise algorithm
are available at (http://compubioverne.group/). The source code is ready to use and
customizable to predict TSS in any eukaryotic organism.
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INTRODUCTION
The heightened interest and lowered costs of sequencing has led to intensified use of
mathematical and statistical tools to improve the accuracy and replicability of genomic
analysis. Until recently, there has been a relatively simplistic and deterministic notion
of promoter organization and the creation of functional models of gene regulation. We
are at a turning point in genetic research—we are actively assembling and refining the
‘‘dictionary’’ of genetics, but we are in the infancy of development of ‘‘genetic grammar’’.
Multiple questions remain to be addressed: what do the individual ‘‘words’’ mean? How
does genotype translate to phenotype? This is very much like the time in physics, over
100 years ago, when the classical approach had to be replaced by quantum theory and
statistical mechanics. We cannot understand genetics without powerful statistical and
computational tools for analysis and for verifying our hypotheses regarding genome
manifestations.

Thousands of eukaryotic genomes have been sequenced so far (https://www.ncbi.nlm.
nih.gov/genome/browse/#!/eukaryotes/), including animals (1,590), fungi (3,275), and
plants (665). As of 2018, these genomes are at various assembly levels, with 840 genomes
assembled at the level of chromosomes, 46 are complete, 1,191 are in contigs, and 4,057
are at the level of genomic scaffolds. Genomic projects are not limited to sequencing and
genome assembly. Re-sequencing large populations is becoming an important tool to
unravel population structure, detect signatures of selection and to map quantitative trait
loci (QTL) (Atwell et al., 2010). As resequencing costs plummet and technology platforms
continue to expand throughput (e.g., Illumina NovoSeq), genomics communities are now
contemplating the possibilities of resequencing entire germplasm collections to detect
the vast majority of existing alleles and haplotypes. One essential requirement to capture
allelic diversity is to have high-quality reference genomes that span the breadth of genomic
diversity for mapping resequencing data.

Understanding the functional role of a given single-nucleotide polymorphism or a
structural variant requires knowledge of its location with respect to coding and regulatory
regions and the elements involved (Li et al., 2015; Gao et al., 2018; Tatarinova et al., 2016;
Triska et al., 2017b). In addition, the regulatory role of a transcription factor binding site
(TBFS) has been demonstrated to depend on the position of the TFBS with respect to the
transcription start site (TSS) (Berendzen et al., 2006; Pritsker et al., 2004). Determination
of the precise location of TSS is an essential preparatory step for motif discovery and
reconstruction of gene regulatory networks (Triska et al., 2017a; Troukhan et al., 2009).
The interaction of a vast number of proteins, multi-subunit complexes, and DNA binding
sites make eukaryotic transcriptional regulation an extremely convoluted process (Eckardt,
2014). Therefore, it is vitally important to have reliable methods for promoter prediction
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and analysis of regulatory elements if we are to enhance our capacity to engineer crops or
to select therapeutic targets.

Homology-based prediction of coding regions is a relatively straightforward procedure
(Keilwagen et al., 2018). Multiple tools and pipelines exist for finding positions and
functions of genes, such as MAKER (Campbell et al., 2014a; Campbell et al., 2014b; Holt
& Yandell, 2011), BREAKER (Hoff et al., 2015), Augustus (Stanke & Morgenstern, 2005),
GeneMarkHMM(Lukashin, 1998), FgeneSH (Salamov & Solovyev, 2000), andmany others.
These pipelines achieve remarkably high accuracy in homology-based gene finding;
however, homology between species does not necessarily extend beyond coding regions,
and, therefore, accurate prediction of promoters is difficult. It has been reported that even
state-of-the art modern methods of promoter mapping are incapable of achieving 100%
accuracy (Alexandrov et al., 2009; Alexandrov et al., 2006; Batut et al., 2013; Carninci et al.,
2006; Herbig, Sharma & Nieselt, 2013; Kawaji et al., 2006; Kawaji et al., 2014; Morton et al.,
2014; Tatarinova et al., 2013; Tatarinova et al., 2016; Troukhan et al., 2009). For example,
current annotations of rice (MSU7) and maize (B73, 6a) contain 56K and 63K predicted
genes, correspondingly (Liseron-Monfils et al., 2013), and for nearly two–thirds of those
genes, TSS is not identified precisely. Traditional deterministic approaches can predict
only ∼50% of promoters with one false positive promoter predicted every 700–1,000
nt of the genome (Shahmuradov & Solovyev, 2015; Solovyev, Shahmuradov & Salamov,
2010). This accuracy is insufficient to make reliable predictions, because we expect one
promoter per 10,000–20,000 nt of a genome. PromH (Solovyev & Shahmuradov, 2003) used
conservation of promoter functional components between orthologous genes to improve
prediction of TSS. PromH was able to predict TSS within 10 nt for 90% of the TATA+
promoters and for 40% of TATA- genes, but only if there are highly similar homologous
sequences from closely related species. The TSSer algorithm (Troukhan et al., 2009) that
combined positional frequency of 5′ EST/RNA-Seq matches on genomic DNA with gene
models was able to accurately predict one transcription start site per locus. However,
it is now accepted that alternative promoters are associated with differential expression
in various tissues and chromatin states (Rye et al., 2014). A nonparametric maximum
likelihood approach, NPEST (Tatarinova et al., 2013), can predict multiple TSSs per locus
if 5′ EST/CAGE/mRNA data are available. Promoter sequences predicted by NPEST were
demonstrated to be more accurate for the A. thaliana genome than sequences identified
in several gold standard databases, such as TAIR, Plant Prom DB and Plant Promoter
Database. However, it is difficult to identify TSS from RNA-Seq alone, since only 26% of
genes display a maximum of the RNA-Seq coverage in the range [TSS-50, TSS + 250],
and only 60% of genes display this maximum in the range [TSS-50, TSS + 550] (Steijger
et al., 2013). Enough RNA-Seq and CAGE data is not available for all genomes of interest.
Therefore, it is imperative to develop alternative strategies.

There are several factors complicating the process of TSS prediction, such as existence of
multiple TSS per locus. Studies on mammalian and plant genomes have revealed that many
eukaryotic genes are associated with multiple distinct promoters (Batut et al., 2013; Farrell
& Bassett, 2007; Louzada, 2007; Morton et al., 2014; Tatarinova et al., 2013). Moreover,
eukaryotic promoters are characterized by multiple TSSs and can be classified based on
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the distribution and utilization of their collective TSSs. Consequently, the association with
several distinct promoters allows for a single gene to encode various protein isoforms
(Sandelin et al., 2007).

In addition, the performance of standard promoter identification in grasses and warm-
blooded vertebrates is complicated by the existence of two classes of genes in those
organisms: GC3—rich and—poor ones (where GC3 is the fraction of Cs and Gs in the
third position of codons). Nucleotide composition of GC3—rich genes differs from GC3—
poor ones; they also have higher variability of gene expression levels (resulting in fewer
full-length mRNA support) (Elhaik, Pellegrini & Tatarinova, 2014; Elhaik & Tatarinova,
2012; Tatarinova, Elhaik & Pellegrini, 2013). Since a majority of the stress-related and
tissue-specific genes are GC3-rich (Chan et al., 2017b), refinement of promoter prediction
pipeline is an essential task.

Many genomic features are associatedwith the location of promoter: positional frequency
of 5′ ESTs and RNA-Seq matches on genomic DNA, nucleotide distribution, DNA
methylation, distribution of SNPs, and characteristic regulatory elements. Incorporation
of those data types allows accurate prediction of TSS. A recently developed tool, TSSPlant
(Shahmuradov, Umarov & Solovyev, 2017), based on the Expectation Maximization (EM)
algorithm, achieves significantly higher accuracy compared to state-of-the art promoter
prediction programs for both TATA-containing and TATA-less promoters. Umarov &
Solovyev (2017) developed a deep learning approach to characterize genomic regions as
promoters and non-promoters; and Triska et al. (2017b) applied it to the rice genome,
achieving 99% accuracy in classification of 250 nt long regions. However, the question of
the specific location of the TSS within these 250 nt long windows remains open.

This paper presents a novel, accurate, and data-type independent procedure for TSS
prediction that can incorporate multiple data types. Our method is based on a machine
learning approach that is capable of uncovering intricate properties of promoter regions
and achieving much higher accuracy than deterministic methods (Umarov & Solovyev,
2017). Our novel method aims to identify the position of the start of transcription with the
highest possible precision using nucleotide composition alone. The method can predict
multiple transcription start sites per locus. It is data-type agnostic and can be extended
to incorporate additional biological features. We present a set of computational tools, a
user-friendly public interface and a curated online database to facilitate these analyses.

MATERIALS AND METHODS
Selection of genome annotation version
We selected rice chromosomes and Genome Annotation release 7 (MSUv7, http:
//rice.plantbiology.msu.edu). There are two commonly used annotations of rice: MSU
(Kawahara et al., 2013) and FgeneSH (Zhang et al., 2008). The Fgenesh gene prediction set
contains 18,389 high quality (5′ full, with mRNA support) gene models, while the MSU
gene prediction set contains 20,367 high quality gene models (Tatarinova et al., 2016). We
used Fgenesh mRNA-based gene prediction models, since Fgenesh-annotated promoters
have a more pronounced nucleotide consensus as compared to the promoters annotated by
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MSU (Triska et al., 2017b). Fgenesh was successfully used to annotate several plant genomes
(Chan et al., 2017a; Chan et al., 2017b; Davis et al., 2010; Ito et al., 2005; Jiang et al., 2015;
Nasiri et al., 2013; Sanusi et al., 2018; Sheshadri et al., 2018; Yao et al., 2005). Therefore, we
selected the Fgenesh annotation as the gold standard for our analysis. To obtain the highest
quality dataset, pseudogenes, transposable elements, and genes with 5′ UTR shorter than
20 nt or longer than 1,000 nt have been excluded.

Training, validation and test sets
The procedure consists of two steps: classification (dividing the genome into ‘‘promoters’’
and ‘‘non-promoters’’) and regression (finding the position of TSS inside the sequence
identified as ‘‘promoter’’). The genomic sequence of Oryza sativa had been divided into
the testing and training sets. The training set contains three files:
1. Training ‘‘non-promoter’’ dataset contains sequences extracted from random

genomic positions separated from experimentally validated transcription start sites
by 2,000 nt. This dataset contains mostly intergenic regions. All sequences are 2,000 nt
long.

2. Training ‘‘promoter’’ dataset contains sequences [TSS-1,000; TSS+999] from the all
chromosomes with length 2,000 nt.

3. File with indicators of TSS positions, containing (2,000 × 1) matrices that correspond
to positions of biologically validated TSS in every training sequence (‘‘1’’ TSS, ‘‘0’’ not
TSS position).
The same set of files was created for the testing dataset. Since the procedure has multiple

steps (classification and regression), training and testing sets were selected at each step of
the method.

The following procedure was used to assemble the dataset for the classification model:
(1) ‘‘Non-promoters’’: 1

4 of the examples chosen from the training ‘‘non-promoter’’
dataset, randomly selecting 512 nt long sequences from 2,000 nt long regions.

(2) ‘‘Promoters sans TSS’’: 1
4 of the examples were randomly selected from the training

‘‘promoter’’ dataset, making sure that the chosen 512 nt long fragment did not overlap
the region [TSS-50, TSS+50].

(3) ‘‘TSS vicinity’’: 1
2 of the examples extracted from the training ‘‘promoter’’ dataset,

containing only one TSS in a random position within the 512 nt long sequence, with a
restriction that it should be in the [250, 450] fragment.
The dataset for the regressionmodel was assembled using sequences that contain one

validated TSSs in a randomly selected position of the [250, 450] fragment. The datasets
are represented as (512 × 4) nucleotide matricesM with 512 columns and 4 rows. The 1st
row contains delta function δ(xi=A)—it is equal to 1 if there is nucleotide ‘‘A’’ in the ith
position of the sequence and 0 otherwise. Similarly, 2nd, 3rd, and 4th rows correspond to
nucleotides C, G and T.

Model training
We implemented the Convolutional Neural Networks (CNN) using the Keras library for
training (https://keras.io/).

Pachganov et al. (2019), PeerJ, DOI 10.7717/peerj.7990 5/18

https://peerj.com
https://keras.io/
http://dx.doi.org/10.7717/peerj.7990


Figure 1 TransPrise algorithm. Inset: CNN architecture that was used in classification/regression
model training. CNN architecture was used in classification and regression steps. BN, batch normaliza-
tion; MP, max. pooling.

Full-size DOI: 10.7717/peerj.7990/fig-1

Classification and Regression models training
The dataset for the classification contains equal numbers of positive and negative examples.
The matrices (512 × 4) described above are input into the model. The CNN architecture
(Fig. 1) started with four parallel convolutional layers (composed of 128 filters with 2, 4,
8 and 16 kernel sizes) ReLU, was used as activation function followed by concatenation.
After concatenation layer we used convolution, batch normalization, max pooling layers
twice. The first convolution had 128 filters and the second had 16. There was one kernel
size and ReLU activation in both situations. To help regularize the model, we used the 0.5
Dropout technique. The signal is fed to two fully connected layers with ReLU activation
functions consisting of 256 and 128 neurons, followed by batch normalization. The output
layer had a sigmoid activation function.

Whole Genome Sequencing (WGS) processing
TransPrise also works withWGS data in fasta format.We prepared a Python script that with
250 min run time on a genome of 374 Mb long. It uses a sliding window for extraction of
512 nt long sequences with the step size 4 nt. If the classification step identifies a fragment
as TSS-containing, this fragment will be passed to the regression step. The prediction
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vector is compared to the TSS model using a L1 norm. The default value for the similarity
threshold is 600, but it can be modified by users. The only restriction of our algorithm is
that alternative TSSs must be more than 100 nt of each other.

Model evaluation
For the purpose of the K-fold cross-validation, the dataset is randomly divided into K equal-
size subsets. Of the K subsets, a single subset is retained as the validation data for testing the
model, and the remaining (K-1) subsets are used for training. The cross-validation process
is then repeated K times (the ‘‘folds’’), with each of the K subsamples used exactly once as
the validation data. Then, the results from K folds are averaged. The advantage of K-fold
cross-validation is that all observations are used for both training and validation, and each
observation is used for validation exactly once. We conducted 10-fold cross-validation
(dataset was divided into training and validation sets in 9:1 ratio; validation set was used
to avoid overfitting and find the optimal number of learning epochs). The ROC curves
obtained in 10-fold cross-validation are presented in the ‘‘Results’’ section. We determined
that the optimal number of learning epochs is five. After the model training, we tested our
model using the test set and calculated Accuracy (Ac), Sensitivity (Se), Specificity (Sp), and
the Matthews Correlation Coefficient (CC):

Specificity=
TP

TP+FP
,

Sensitivity=
TP

TP+FN
,

Accuracy=
TP+TN

TP+TN+FP+FN
,

CC=
TP×TN+FP×FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

,

where TP—true positive, TN—true negative, FP—false positive, FN—false negative. The
input of the regression model has the same format as the classification model input. TSS
is assumed to be located at a random position between nucleotides 250 and 450. There is
only one difference between classification and regression models: in the output layer the
activation function is replaced by a linear function.

We trained the classification and regression models using the Keras Library and
performed 10-fold cross validation procedures for them. The algorithm for TSS prediction
is presented in Fig. 1. For every fold, we carried out five learning epochs. The complete
learning time was 35 s on average. We performed 10-fold cross-validation and calculated
the average value of mean absolute error (MAE) to estimate the accuracy of TSS position
prediction, where yi—position of TSS in test set (assumed to be accurate), and xi—predicted
position of TSS.

MAE=
∑n

i=1

∣∣yi−xi∣∣
n

.

Figure 2 shows the flowchart for model building and validation.
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Figure 2 Flowchart of model building and validation. The figure presents a flowchart of the model
building and validation.

Full-size DOI: 10.7717/peerj.7990/fig-2

RESULTS
Classification
To reduce the influence of how the data is split on the resulting testing statistics, we carried
out a 10-fold cross-validation (CV) procedure for ‘‘internal’’ validation and supplemented
it by the ‘‘external’’ validation of the rice chromosome 2 (excluded from the training set).
We have randomly divided the dataset into 10 partitions and used each partition as the
testing data while training the model on the remaining partitions. The ROC (Receiver
Operating Characteristic) curve represents dependence of sensitivity on the specificity. It is
a graph showing the performance of a classification model at all classification thresholds.
AUC-ROC curves for classifier obtained in 10-fold ‘‘internal’’ cross-validation are presented
in Fig. 3. Accuracy = 0.88, Se = 0.84, Sp = 0.92, CC = 0.79, AUC = 0.94.

Thenwe have selected the bestmodel and evaluated its performance on rice chromosome
2 (‘‘external’’ validation dataset) and compared it with TSSPlant. The dataset for ‘‘external’’
validation contained 2,000 nucleotide sequences with length 512 nt, with 1,000 examples—
‘‘non-TSS’’ sequences and 1,000—‘‘TSS’’ sequences. For the ‘‘external’’ validation we
calculated the Matthews correlation coefficient (MCC), Accuracy (Ac), Sensitivity (Se),
Specificity (Sp), and Area Under the ROC Curve (AUC-ROC) for classification models.
The results of the ‘‘external’’ validation are presented in Table 1.

We have clearly shown that the classification model (Stage 1 of the pipeline) already
achieves high accuracy (0.88). Regression (Stage 2) will further refine the prediction.
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Figure 3 ROC curve for the training and testing datasets. ROC-curves obtained 10-fold cross-validation
procedure of classification model. (A) Training dataset; (B) testing dataset. Accuracy= 0.88, Se= 0.84, Sp
= 0.92, CC= 0.79, AUC= 0.94.

Full-size DOI: 10.7717/peerj.7990/fig-3

Table 1 Comparison of accuracy metrics of TransPrise and TSSPlant classification models. TransPrise
offers higher accuracy compared to the TSSPlant.

Classification model MCC Accuracy Sensitivity Specificity AUC

TSSPlant 0.310 0.603 0.976 0.231 0.603
TransPrise 0.791 0.895 0.872 0.919 0.952
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Figure 4 Error density curves obtained in 10-fold cross-validation of regressionmodels. The error
density curves were obtained in the 10-fold cross validation procedure for regression models. The mean
absolute error (MAE) for regression model was 47.99 nt. The testing was performed for entire chromo-
somes, without filtering for possible TSS containing regions, located upstream of the ATG.

Full-size DOI: 10.7717/peerj.7990/fig-4

Regression
Figure 4 shows the error density curves obtained in the 10-fold cross validation procedure
for regression models. The mean absolute error (MAE) for regression model was 29.19 nt.
The mean difference between predicted and true TSS, if the guess is random, is 66 nt.

We compared the accuracy of promoter prediction for TSSPlant and TransPrise. For
this purpose, we selected rice chromosomes 1 and 2. The testing was performed for entire
chromosomes, without filtering for possible TSS containing regions, located upstream of
the ATG.

These two chromosomes contain 5,298 high quality experimentally validated TSS,
defined as follows:
(1) Locus does not correspond to transposable element
(2) Locus has experimental support (full-length mRNA)
(3) If multiple isoforms are predicted, the ‘‘representative’’ is used
(4) Size of the 5′ UTR is at least 20 nt.

For these two chromosomes, TSSPlant predicted 153,009 TSSs, while TransPrise has
found 13,765 sites. Of TSSPlant predictions, 10,721 (∼7%) were located within 1,000 nt
from validated TSS. Of TransPrise predictions, 3,989 (∼29%) were located within 1,000 nt
from validated TSS. Additionally, TransPrise predictions tend to be closer to validated TSS
than TSSPlant predictions (Fig. 5).

Validation of TransPrise in Homo sapiens
We have used Cap Analysis of Gene Expression (CAGE) data from the DBTSS database
(https://dbtss.hgc.jp/), using the HG19 version of the human genome (Suzuki et al.,
2018). The model was trained on all chromosomes except chromosome 8 and tested on
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Figure 5 Comparison between TransPrise and TSSPlant predictions (fraction of sites). TransPrise pre-
dictions tend to be closer to validated TSS than TSSPlant predictions. (A) Number of predictions; (B) frac-
tion of prediction.

Full-size DOI: 10.7717/peerj.7990/fig-5

chromosome 8. Accuracy of the classification model was 0.778, sensitivity 0.816, specificity
0.74, and Matthews correlation coefficient 0.57. The mean absolute error of the regression
model was 47.986 nt.

DISCUSSION
We have developed an efficient deep learning approach for prediction of the position
of transcription start sites in eukaryotes using properties of a nucleotide sequence. The
approach is data-type independent and allows incorporation of additional data types
(such as RNA-seq and tissue specific DNA methylation), refining positions of TSS for
tissue-specific and stress-specific expression.

We compared TransPrise with the TSSPlant approach on an independent test set
composed of 2,000 nucleotide sequences. All sequences were 512 nt long, and 1,000
sequences did not contain TSS (‘‘non-TSS’’), and 1,000 contained TSS (‘‘TSS’’ sequences).
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Figure 6 Distribution of CA and TATAmotifs in promoter region. (A) Distribution of the CA motif
has a peak at TSS (position 0). (B) TATA motif is frequently located at position−30, its density shows a
peak at−30.

Full-size DOI: 10.7717/peerj.7990/fig-6

TheMatthews correlation coefficient value for TransPrise is more than twice larger than for
TSSPlant classification models (0.79 vs. 0.31), indicating the significantly higher efficiency
of TransPrise in distinguishing between regions that contain and do not contain starts of
transcription. Additionally, a regression model was created for precise localization of TSS
within the sequence classified as a ‘‘promoter’’. We validated our regression model on a
test set composed of 1,000 ‘‘TSS’’ sequences selected from chromosome 2 and calculated
the mean absolute error to be 47 nt.

Another important genome annotation task is identification of functional motifs. The
architecture of TransPrise is especially designed for that. The first convolution layer is
composed of four different kernel size filters (ai,j)—4 × 2, 4 × 4, 4 × 8, 4 × 16 matrices,
where [i:[1,0,0,0](A),[0,1,0,0](T),[0,0,1,0](C),[0,0,0,1](G)] and [j:2,4,8,16—length of
motif sequence] (in total 128 filters of each type). Aftermodel training, the filters correspond
to PWM (position-specific weight matrix) describing informative sequences in promoters
and can be visualized as sequence logos. Several filtermotifs correspond to known regulatory
elements: TGGGCC (Lu et al., 2013), CGATT (Chen et al., 2016), ACTCAT (Weltmeier et
al., 2006), and CGCG box (Yang & Poovaiah, 2002). Motif TGGGCC is targeted by the
TCP transcription factor through its interaction with proliferating cell nuclear antigens
PCF1 and PCF2 (Lu et al., 2013); ACTCAT motif is a typical binding site of basic leucine
zipper (bZIP) transcription factor (Weltmeier et al., 2006); CGCG cis-elements are found
in promoters of stress-related genes, for example involved in ethylene signaling, abscisic
acid signaling, and light signal perception. They are bound by AtSR1 transcription factor
(Yang & Poovaiah, 2002).

Figure 6 shows ‘‘filter’’ motifs that correspond to two well-characterized features of
eukaryotic promoters: Initiator element CA and TATA-box (Smale & Baltimore, 1989; Zhu,
Dabi & Lamb, 1995). Therefore, we have shown that at least some of the features selected
by the model as informative for identification of TSS correspond to known, biologically
validated regulatory elements, over-represented at or near the start of transcription. We
believe that other features may correspond to unknown regulatory elements.
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CONCLUSIONS
TransPrise is an advanced tool for improving genome annotation. This is symbolic of a
mathematical approach to biology, which is increasingly significant. As the pressure to
annotate genomes increases with plummeting sequencing costs, we must focus efforts
on understanding the significance of individual genomic regions. TransPrise can predict
important regulatory regions and identify characteristic motifs at a high level of efficiency
relative to existing approaches. TransPrise is data-type and species independent tool that
can be easily installed and customized.
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