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Objectives: Atypical familial mycobacteriosis (AFM, OMIM #209950) is caused by mutations in genes
regulating IL12/IFNG pathway. Some of the mutations exhibit incomplete penetrance, and they have
been proposed to be involved in the common (polygenic) predisposition to tuberculosis (TB). We set out
to test this hypothesis in two populations from Siberian region of Russia with high prevalence of TB.
Material and methods: The prevalence of twelve mutations in IL12/IFNG pathway genes of were analysed
in 331 Russians and 238 Tuvinians TB patients and in 279 healthy Russians and 265 healthy Tuvinians. A
screening for new mutations and rare polymorphisms was carried out in 10 children with severe
generalized TB and severe BCG-vaccine complications using Sanger's bidirectional sequencing.
Results: Twelve mutations most commonly identified in AFM patients appeared to be “wild-type”
monomorphic in the studied groups. No new mutations or rare polymorphisms were identified by
sequencing. However, 15 common single nucleotide polymorphisms were found, none of which was
associated with TB after correction for multiple testing.
Conclusion: The results of the study contradict with a hypothesis that mutations underlying AFM syn-
drome are involved in the predisposition to TB.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Tuberculosis (TB) remains one of the most common and
dangerous infection diseases worldwide, accounting for more than
1.5million deaths annually [1]. Host genetic factors are known to be
important modifiers of the TB risk as approved by epidemiologic,
twins, and molecular genetic studies [2,3]. In contemporary ge-
netics, there are two main directions in the study of inherited de-
terminants of TB risk: the analysis of common (polygenic)
predisposition in endemic areas and the analysis of families with
rare monogenic (Mendelian) forms of susceptibility to mycobac-
terial infection designated as “atypical familial mycobacteriosis”
(AFM) or “Mendelian susceptibility to mycobacterial disease” in the
OMIM database (MIM #209950) [4,5].
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AFM is defined as a severe clinical disease, disseminated or
localized, recurrent, caused by weakly virulent bacteria species,
such as Mycobacterium bovis BCG, M. marinum, M. smegmatis, M.
avium, Salmonella enterica and others in otherwise healthy in-
dividuals. The disease is a rare inherited syndrome, clinically
described for the first time in 1951 as a disseminated disease
caused by BCG vaccination [6]. It is now established that AFM is
caused by mutations in 9 genes: IL12B (p40 subunit of IL-12),
IL12RB1 (b1 subunit of the receptor to IL-12), IFNGR1, IFNGR2 (first
and second domains of the receptor to IFN-g), STAT1 (IFN-g-asso-
ciated signal transductor and activator of transcription), ISG15
(interferon-induced protein 15), IRF8 (interferon regulatory factor
8), IKBKG (NEMO; main modulator of NF-k-B), and CYBB (cyto-
chrome b(558), beta subunit) [7,8]. These mutations have common
pathogenetic effect based of the impairment of the IFN-g signalling,
which is the main activator of the macrophages anti-mycobacteria
defence [4].

This syndromewas described inmore than 500 patients from 44
countries. The age of the patients with AFM is less than 14 years;
most of them originate from non-endemic areas of countries and
erlying atypical familial mycobacteriosis are not found in tuberculosis
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groups with high frequency of inbreeding [9,10]. Mutations in the
IL12RB1 and IFNGR1 genes account for about 80% of all recorded
cases of AFM syndrome. Most of the mutations are autosomal,
except for X-linked defects in IKBKG and CYBB, and exhibit complete
or incomplete penetrance.

Incomplete penetrance of some mutations allowed hypothe-
sising that these genetic abnormalities can be distributed in pop-
ulations with high frequency (>1%). This, in turn, makes it possible
that the rare polymorphisms with major effect to the development
of TB and low penetrance can account for susceptibility to the
disease in common population and not only in separate families.
The results of theoretical estimates of Mendelian susceptibility
among children affected by disseminated TB showed that the fre-
quency of AFM can vary between 3% and 45% [11]. This means that
almost a half cases of children TB can be caused by Mendelian
susceptibility. Also, these mutations can play a significant role in
susceptibility to TB among adults. At least one study revealed
IL12RB1 loss-of-function homozygous mutations in two out of 50
children with severe TB, thus confirming that some of AFM causing
mutations may be responsible for predisposition to TB [12]. To the
best of our knowledge, no systematic screening for mutations in
AFM genes was carried out in Russia. Therefore, we set out to
perform such the screening of the AFM causing mutations in the
IL12B, IL12RB1, IFNGR1, IFNGR2, STAT1, IKBKG gene in Tuvinians and
Russians, ethnically divergent populations from Siberian region of
Russia with high prevalence of TB.

2. Material and methods

The study protocol was approved by the Ethics Committee of the
Research Institute for Medical Genetics of the Siberian Branch of
Russian Academy of Medical Sciences. Signed informed consent
was obtained from each participant or his/her parents (in case of
children).

The study was carried out in three stages (Figure 1). First, we
screened for known AFM-causing mutations in patients with most
severe forms of primary TB. Then, we carried out a bidirectional
Sanger's sequencing to seek novel mutations in exons and
exoneintron junctions of the IL12RB1, IFNGR1, IFNGR2, STAT1, and
IKBKG genes. Finally, we performed a case-control study for asso-
ciation between TB and polymorphisms revealed by sequencing.

Genotyping for knownmutations and polymorphisms was done
using restriction fragments length polymorphism assays (details
are available on request). The screening for novel mutations and
Figure 1. The stu
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rare polymorphisms possibly underlying AFM was done by bidi-
rectional Sanger's sequencing of DNA samples of 10 children with
generalized forms of TB and severe complications of BGC-
vaccination using 3130xl Genetic Analyzer (Applied Biosystems,
USA). The following exons were sequenced: STAT1, exons 3e25;
IL12RB1, exons 1e18; IL12B, exons 2e7; IFNGR1, exons 1e7
(approximately 75% of exon 7 was covered); IFNGR2, exons 1e7;
IKBKG, exon 2. The results of the sequencing were analysed using
BioEdit [http://bioedit.software.informer.com] and Sequence
Scanner v.1.0 [http://www.appliedbiosystems.com/absite/us/en/
home/support/software-community/free-ab-software.html]
software.

The case-control study was carried out using 331 DNA samples
of Russians from Tomsk region (113 women, 218 men; mean age
±S.D. of 31.7 ± 15.4) and 238 DNA samples of Tuvinians from Tuva
Republic (116 women, 122 men; mean age of 33.5 ± 12.9) with the
diagnoses of primary lung TB and severe secondary TB (Table 1).
Control samples included 279 Russians (208 women, 71 men, mean
age of 45.4 ± 21.7) and 265 Tuvinians (63 women, 202 men; mean
age 33.1 ± 8.5) never suffered from TB.

A screening for newmutations and rare polymorphisms of AFM-
genes was carried out in 10 children including 8 girls and 2 boys.
The age ranged from 2 to 18 years with mean ± S.D. of 5.68 ± 5.65.
Eight children were diagnosed with generalized TB further sub-
divided into lymphadenopathy complicated disseminated pulmo-
nary TB (n ¼ 5), TB meningitis (n ¼ 2), and renal TB (n ¼ 1). Also,
two children were diagnosed with BCG osteitis.

All the study participants were unrelated to each other and HIV-
negative.

Logistic regression models were fitted to analyse association
between gene polymorphisms and TB using SNPassoc package for R
[13]. Codominant, dominant, recessive and log-additive genetic
models were tested. Bonferroni correction was applied to control
for multiple testing.

3. Results and discussion

The study was designed to test a hypothesis of an impact of rare
mutations and polymorphisms causing AFM syndrome into com-
mon (polygenic) predisposition to TB in endemic populations.

On the first stage of the study, in sub-samples of 76 Russians and
38 Tuvinians with most severe forms of TB, we performed a
screening for most common AFM causing mutations in the IL12RB1,
IFNGR1, IFNGR2, and STAT1 genes. Twelve mutations described at
dy pipeline.
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Table 1
Clinical forms of tuberculosis (TB) in the studied groups.

Clinical forms of TB Number of cases, (%)

Russians Tuvinians

Infiltrative pulmonary TB 155 (46.8) 148 (62.2)
Fibrotic-cavernous pulmonary TB 4 (1.2) 38 (15.9)
Disseminated pulmonary TB 68 (20.5) 28 (11.8)
Focal pulmonary TB 28 (8.5) 9 (3.8)
TB of the intra thoracic lymph nodes 47 (14.2) 2 (0.8)
Primary tuberculosis complex 3 (0.9) 4 (1.7)
Generalized TB 8 (2.4) 1 (0.5)
Another rare forms* 18 (5.5) 8 (3.3)
Total 331 238

* Pulmonary tuberculoma, caseous pneumonia, miliary pulmonary TB, cirrhotic
pulmonary TB, tuberculous pleurisy, TB of bronchus.
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least in two independent cases were chosen for this purpose:
IL12RB1 Gln32Ter, Gln376Ter, Arg213Trp; IFNGR1 Ile87Thr, 4-bp Del
NT818, 1-bp Del NT818; IFNGR2 2-bp Del 278AG, Thr168Asn,
663Del27; STAT1 Leu706Ser, Gln463His, Glu320Gln.

The results of the genotyping revealed no pathogenic variant
alleles in the studied samples (only wild-type alleles were identi-
fied), thus rejecting an idea of the presence of these mutations in
common population. However, this cannot exclude a possibility of
the presence of other AFM causing mutations not tested in our
study. This is consistent with the observation that genetic bases of
AFM remain unknown in approximately 50% of cases [9]. This issue
can be addressed by the systematic direct sequencing of genes
underlying AFM in patients with rare forms of TB. Such study was
carried out for IL12RB1 gene and revealed two cases of homozygote
loss-of function mutations (K305X and R173W) among 50 children
with severe TB from Iran, Morocco and Turkey [12]. Another study
claimed the discovery of autosomal-dominant IL12Rb2 deficiency
in individuals with disseminated TB; however, the detailed results
were not provided [14].

Taking this into account, on the second stage, we performed
bidirectional Sanger sequencing of the translating exons and
exoneintron junctions of the studied genes in 10 children suffered
from severe generalized forms of TB and complications of BCG-
vaccination. No known or novel mutations causing AFM were
found using this approach; however, 15 known single nucleotide
polymorphisms (SNPs) were identified in different studied genes
(Table 2). Seven discovered SNPs are located in introns, 3 SNPs in
regulatory regions, 3 SNPs are synonymous, and 2 SNPs in the
IL12RB1 gene are missense-mutations.
Table 2
Polymorphisms in the genes causing atypical familiar mycobacteriosis found by
bidirectional Sanger sequencing in children with generalized tuberculosis and BCG-
vaccine complications.

Gene Polymorphism mRNA exchange Protein exchange Number of
mutated alleles
detected

IL12RB1 rs11086087 c.387G > A p.Val129¼ 4
rs11575934 c.641A > G p.Gln214Arg 7
rs17852635 c.684C > T p.Pro228¼ 3
rs401502 c.1132G > C p.Gly378Arg 7
rs12461312 c.1983 þ 47G > T e 5
rs17882555 c.1983 þ 24C > T e 6
rs3746190 c.*34C > T e 5

IL12B rs919766 c.483-36T > G e 2
IFNGR1 rs2234711 c.-56T > C e 6

rs17181457 c.-72C > T e 2
rs7749390 c.85 þ 10T > C e 6
rs11754268 c.85 þ 45G > A e 2
rs11914 c.1050T > G p.Ser350¼ 3

IFNGR2 rs17883129 c.879 þ 19C > T e 8
STAT1 rs2066797 c.1038-23A > G e 1
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On the third stage of the study, we tested SNPs found in 10
children with severe TB and BCG-vaccine complications for an as-
sociation with TB in Russians and Tuvinians using all available DNA
samples. To increase the power of the study 3 synonymous variants
were excluded. Also we excluded rs919766 polymorphism of the
IL12B gene as it was monomorphic in Tuvinians and too rare in
Russians.

In control groups, the prevalence of the genotypes was
concordant with Hardy-Weinberg expectations for all of the stud-
ied SNPs except for the rs2066797 polymorphism of the STAT1 gene
in Tuvinians (p ¼ 0.018).

In Russians, a nominally statistically significant association be-
tween the rs2066797 polymorphism of the STAT1 gene and TB was
identified (p ¼ 0.007 and 0.010 for dominant and log-additive
models, respectively) (Supplementary Table). Common allele A
and genotype A/A of this polymorphism appeared to be risk factors
for TB in Russians (OR [95% CI] ¼ 2.00 [1.16e3.45] and 2.13
[1.22e3.70], respectively). However, this association becomes non-
significant after Bonferroni correction for multiple testing using a
multiplier of 24 (3 genes � 2 populations � 4 genetic models). This
multiplier was applied because of high linkage disequilibrium be-
tween all tested SNPs in IL12RB1 and IFNGR1 genes, so the number
of independent tests equals to the number of tested genes, not the
polymorphisms.

Overall, our study provides no evidence in support of the
importance of AFM causing mutations, and tested genes, in pre-
disposition toTB. However, the impact of mutations that we did not
analyse and also mutations in other genes causing AFM syndrome
cannot be excluded. Recently, three novel immune response genes
(IRF8, ISG15, and CYBB) have been found to underlie the develop-
ment of AFM [8,15e17]. We did not analyse them in our study as it
was implemented before their importance for AFM was revealed.
Potentially, their study by our or similar methodology can be
fruitful. From the other hand, a number of genome-wide associa-
tion studies carried out so far did not identify AFM causing genes as
associated with TB [18e22], thus testifying against their impact on
common predisposition to TB. Nevertheless, further analysis of
associations between AFM genes variation and TB in different
world populations may be required taking into account essential
population specificity of genetic predisposition to the disease
[23,24].

4. Conclusion

The results of our study do not support a hypothesis about the
impact of rare mutations in IFNG/IL12 pathway genes on common
susceptibility to TB in endemic populations.
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