

ХЕБА ГАМАЛЬ АБД ЕЛЬ-АЗИЗ НАСР

СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ХАРАКТЕРИСТИКА ГЕНОВ-МОДИФИКАТОРОВ ИММУННОГО ОТВЕТА ПРИ ЗАБОЛЕВАНИЯХ ПЕЧЕНИ РАЗЛИЧНОЙ ЭТИОЛОГИИ

03.02.07 – генетика

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата биологических наук

Работа выполнена в Государственном образовательном учреждении высшего профессионального образования «Сибирский государственный медицинский университет Росздрава» и в Учреждении Российской академии медицинских наук Научно-исследовательском институте медицинской генетики Сибирского отделения РАМН

Научный руководитель:	доктор биологических наук, профессор				
	Степанов Вадим Анатольевич				
Официальные оппоненты:	доктор биологических наук, профессор Чердынцева Надежда Викторовна				
	кандидат медицинских наук Тарасенко Наталия Викторовна				
Ведущая организация:	Институт цитологии и генетики СО РАН				
	2011 года в час. на заседании 01 при Учреждении Российской академии генетики Сибирского отделения РАМН по еки Ушайки, д. 10.				
•	н в библиотеке Учреждения Российской ицинской генетики Сибирского отделения				
Автореферат разослан «» «	» 2011 г.				
Ученый секретарь диссертационного совета доктор биологических наук, профессор	Кучер А.Н.				

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы:

С конца 90-х годов прошлого столетия началось активное изучение основ предрасположенности К различным инфекционным генетических заболеваниям (Hill, 1999; Frodsham, 2004; Пузырев, 2003; Фрейдин, 2002). Изучена связь различных генов, как с фенотипом заболевания, так и с патогенетически значимыми качественными и количественными признаками, в том числе, связь генов цитокинов с гепатитами В и С (Toniutto, 2004; Suppiah, 2009; Rauch, 2010) - тяжестью их течения, прогрессированием, ответом на терапию и исходом заболевания (Knapp, 2003; Toniutto, 2004; Гончарова, 2009). Данные же о влиянии генотипа по тем или иным полиморфным вариантам генов на изменчивость количественных показателей, значимых для развития и прогрессирования хронического вирусного гепатита, немногочисленны. Вместе с тем, такие исследования могут помочь более точно определить структуру генетической подверженности к патологии и, зачастую, объяснить ассоциацию генетических маркеров с заболеванием и вариантом его прогрессии.

интерес представляет настоящее время большой «индивидуального ответа» генотипа на воздействие различных факторов внешней среды, агентов инфекционной и неинфекционной природы. Действие на организм человека определенных факторов может в значительной степени изменять паттерн генной экспрессии, определяя, тем самым, особенности индивидуального ответа организма, течения и исходов заболеваний (Blackham, 2010). Среди десятков тысяч человеческих генов, лишь небольшая часть экспрессируются в данном типе клеток в определенный момент времени. Уровни генной экспрессии являются динамическими, и изучение изменения паттерна генной экспрессий является неотъемлемой частью понимания биологических процессов (Cao, 2001; Blackham, 2010). Это подтверждается экспериментальными исследованиями, выявившими кластеры совместно экспрессии которых экспрессирующихся генов структура и уровень значительной степени изменялись в зависимости от воздействующего патогена (Milks, 2009).

Инфекционные заболевания являются удобной моделью для изучения генофенотипических взаимодействий в детерминации сложных мультифакторных признаков у человека, поскольку позволяют выделять фактор, определяющий развитие заболевания. В качестве таких модельных патологий могут служить вирусные гепатиты, характеризующиеся высокой распространенностью и степенью хронизации, поздней выявляемостью и неблагоприятным прогнозом. Полная изученность вирусов гепатита С (HCV) и гепатита В (HBV) дает возможность более четко охарактеризовать взаимоотношения «патоген-хозяин» и выявить особенности функционирования генома человека при воздействии этих патогенов. Изучение алкогольной болезни печени в сравнении с вирусными гепатитами, дает возможность выявления особенностей функционирования генома при воздействии на организм агентов инфекционной и неинфекционной природы.

Решение проблемы «индивидуального ответа» генотипа на воздействие различных факторов внешней среды возможно путем выбора однонуклеотидных полиморфных вариантов (SNPs) в генах иммунного ответа, оказывающих влияние на функционирование гена и дальнейшей оценки связи данных вариантов генов с заболеваниями печени вирусной и невирусной природы (хронические вирусные гепатиты С, В и алкогольная болезнь печени), особенностями клинического течения и исходов этих заболеваний, оценить влияния генетического полиморфизма исследуемых генов на особенности их функционирования (экспрессии) в условиях воздействия на организм человека повреждающих факторов вирусной и невирусной природы.

Таким образом, представляется актуальным исследование структурнофункциональных особенностей генов-модификаторов иммунного ответа при заболеваниях печени различной этиологии

Цель исследования:

Провести структурно-функциональный анализ генетической подверженности к заболеваниям печени различной этиологии по генам иммунной системы.

Задачи исследования:

- 1. Изучить полиморфизм генов иммунной системы *IL12B* (A1188C и rs3212220 G/T); *IL12RB1*(G531A и C2087T); *IFNG* (T-1488C); *IFNGR2* (G-1704/-); *TLR4*(C1196T); *CTLA*(G49A) у больных хроническими гепатитами C (ХВГС) и В (ХВГВ), алкогольной болезнью печени.
- 2. Оценить ассоциации выбранных полиморфных вариантов генов с заболеваниями печени различной этиологии (вирусные гепатиты ХВГС, ХВГВ, алкогольная болезнь печени).
- 3. Выявить ассоциации генов иммунной системы и детоксикации ксенобиотиков *GSTT1/GSTM1* с морфологическими особенностями течения хронических гепатитов различной этиологии качественными и количественными признаками.
- 4. Охарактеризовать паттерн экспрессии генов иммунной системы (*IL12B*; *IL12RB1*; *IFNG*; *IFNGR2*; *TLR4*; *CTLA*) при заболеваниях печени вирусной и невирусной этиологии.

Научная новизна:

Впервые получены данные о генетическом полиморфизме генов *IL12B* (A1188C и rs3212220 G/T); *IL12RB1* (G531A и C2087T); *IFNG* (T-1488C); *IFNGR2* (G-1704/-); *TLR4* (C1196T); *CTLA* (G49A) у больных хроническими гепатитами С (ХВГС), В – (ХВГВ), алкогольной болезнью печени. Впервые выявлены ассоциации гомозиготного генотипа «AA» полиморфного варианта гена *IL12B* (A1188C) и генотипа «GG» варианта гена *IFNGR2* (G-1704/-) с хроническим вирусным гепатитом С и генотипа «TT» SNP гена *IL12B* (rs3212220 G/T) и генотипа «CT» варианта гена *IL12RB1* (C2087T) с алкогольной болезнью печени. Впервые показаны различия между группами больных ХВГС и ХВГВ в частотах аллеля, несущего делецию «-» полиморфизма гена *IFNGR2* (G-1704/-).

Впервые выявлено, что полиморфные варианты гена IL12B (A1188C) и (rs3212220 G/T) ассоциированы с уровнем цитокинов (IL4, IL12, IFN- γ) и

протромбиновым индексом у больных XBГС; делеционный полиморфизм в промоторной области гена IFNGR2 (G-1704/-) ассоциирован с уровнем общего билирубина, показателями тимоловой пробы, концентрацией α_1 -протеиназного ингибитора у больных XBГС и уровнем АСТ у больных XBГВ; полиморфизм гена IFNG (T-1488C) влияет на уровень α_1 -протеиназного ингибитора у больных XBГС; полиморфный вариант гена CTLA4 (G49A) ассоциирован с такими биохимическими показателями как АСТ и АЛТ у больных XBГС; полиморфный вариант гена TLR4 (C1196T) оказывает влияние на показатели тимоловой пробы у больных XBГВ.

Впервые выявлены особенности функционирования генов *IL12B*; *IL12RB1*; *IFNG*; *IFNGR2*; *TLR4*; *CTLA* в биоптатах печени в зависимости от воздействующих факторов вирусной и невирусной природы. Показано, что при ХВГС в гепатоцитах наблюдается увеличение экспрессии гена *IL12B*, при ХВГВ – увеличение экспрессии генов *IL12B* и *IFNG* по сравнению с уровнем экспрессии этих генов у больных АБП.

Научно-практическая значимость:

Данные настоящего исследования дополняют фундаментальные сведения о генетической компоненте предрасположенности к хронизации вирусных гепатитов С и В и развитию алкогольной болезни печени. Полученные в настоящей работе данные могут быть использованы в клинической практике для оценки особенностей течения и исходов данных заболеваний для носителей определенных генотипов. Результаты исследования могут быть использованы в лекционном курсе для врачей различных специальностей по терапии и медицинской генетике. Полученная информация о полиморфизме генов модификаторов иммунного ответа у русских жителей г. Томска может быть использована при проведении ассоциативных исследований подверженности к инфекционным заболеваниям.

Положения, выносимые на защиту:

- 1. Генетическая составляющая подверженности к ХВГС, ХВГВ и АБП, тяжести течения заболеваний и изменений патогенетически значимых количественных признаков является различной: полиморфные варианты генов *IL12B* (A1188C), *IFNGR2* (G-1704/-), *CTLA* (G49A) ассоциированы с ХВГС; полиморфные варианты генов *IFNGR2* (G-1704/-) и *TLR4* (C1196T) ассоциированы с ХВГВ, полиморфные варианты генов *IL12B* (rs3212220 G/T) и *IL12RB1* (C2087T) с АБП.
- 2. Заболевания печени вирусного и алкогольного генеза характеризуются различным паттерном экспрессии генов-модификаторов иммунного ответа: в биоптатах печени при ХВГС увеличивается экспрессия гена *IL12B*, при ХВГВ увеличивается экспрессия генов *IL12B* и *IFNG*, АБП характеризуется угнетением экспрессии генов *IL12B* и *IFNG*.

Апробация работы:

Основные материалы диссертационной работы доложены на межлабораторных научных семинарах НИИ медицинской генетики СО РАМН (Томск 2009, 2010); на VI Съезде Российского общества медицинских генетиков (Ростов-на-Дону, 2010).

<u>Публикации:</u> По теме диссертации опубликовано 3 работы, в том числе 2 статьи в рецензируемых журналах списка ВАК, и 1 тезисы в материалах отечественной конференции.

Структура и объем диссертации: Диссертационная работа изложена на 154 страницах машинописного текста и состоит из введения, трех глав («Обзор литературы», «Материалы и методы» и «Результаты и их обсуждение»), заключения, выводов, и списка литературы. Данные проиллюстрированы 16 рисунками и 32 таблицами. Библиографический указатель включает 220 источников, из них 190 зарубежных.

МАТЕРИАЛЫ И МЕТОДЫ

В группу больных хроническим вирусным гепатитом (ХВГ) вошли 321 человек. Среди них 185 человек были больны хроническим вирусным гепатитом С (ХВГС), 47- хроническим вирусным гепатитом В (ХВГВ) и 89- алкогольной болезнью печени (АБП). Критериями для включения в исследование служили: 1) серологические маркеры ХВГ В и/или С, обнаруженные в сыворотке крови методом иммуноферментного анализа (набор фирмы "ELISA"); 2) ДНК вируса гепатита В и РНК вируса гепатита С, выявленная с помощью полимеразной цепной реакции (ПЦР). У всех больных проведена морфологическая верификация диагноза с определением индекса гистологической активности по Knodell (Knodell, 1981) и стадии фиброза по Desmet (Desmet, 1994). Контрольная группа состояла из 96 русских жителей г. Томска.

Для оценки ассоциации полиморфных маркеров генов со стадией фиброза больных ХВГС разделили на три подгруппы. К первой подгруппе (I) отнесены больные со слабой степенью фиброза (стадия I) (n=61). Вторую группу (II) составили 85 человек с умеренным и выраженным фиброзом (стадии II и III соответственно). В третью группу (III) вошли 28 больных с циррозом печени (стадия фиброза IV). Для больных с циррозом печени был проведен дополнительный анализ ассоциаций «нулевых» генотипов генов глутатион Sтрансфераз *GSTT1* и *GSTM1* с циррозом печени, обусловленным НСУинфекцией. Генотипирование генов GSTT1 и GSTM1 проводили с помощью мультиплексной полимеразной цепной реакции. Последовательности праймеров: GSTM1(прямой - 5'-tgc-ttc-acg-tgt-tat-gga-ggt-tc; обратный - 5'-gtt-ggg-ctc-aaa-tatacg-gtg-g); GSTT1(прямой - 5'-ggt-cat-tct-gaa-ggc-caa-gg; обратный- 5'-ttt-gtg-gactgc-tga-gga-cg); внутренний контроль амплификации (ген рецептора эстрогена ESR1) (прямой - 5'-caa-gtc-tcc-cct-cac-tcc-cc; обратный - 5'- gtg-cga-gtg-gct-cagtgt-gt). Гомозиготное состояние по "нулевым" аллелям генов GSTT1 и GSTM1 определяли по отсутствию соответствующих фрагментов размером 131 и 114 п.н. и обозначали «-». Наличие этих фрагментов свидетельствовало о присутствии нормальной копии гена в гомо- либо гетерозиготном состоянии и было обозначено «+».

Исследование способности мононуклеарами продуцировать интерлейкин 4, 10, 12 (ИЛ-4, ИЛ-12, ИЛ-10), фактор некроза опухолей - α (ФНО- α) и содержание в сыворотке крови фибронектина, коллагеназы, протеиназного ингибитора (α_1 -ПИ), макроглобулина (α_2 -МГ), эластазы, свободного

оксипролина и оксипролина, связанного с белком (СОП и БОП соответственно) было проведено по стандартным методикам на базе областной клинической больницы г.Томска.

Выделение ДНК проводили методом фенольной экстракции с помощью коммерческого набора «Вектор ДНК экстракция» (ЗАО «Вектор-Бест», Россия). Генотипирование осуществляли с помощью ПДРФ-анализа продуктов полимеразной цепной реакции (ПЦР), используя описанную в литературе структуру праймеров и соответствующие ферменты рестрикции. В работе были исследованы полиморфизмы генов *IL12B*(A1188C) и (rs3212220 G/T), *IL12RB1* (C2087T) и (G531A), *IFNG* (T-1488C), *IFNGR2* (G-1704/-), *CTLA4* (G49A), TLR4 (C1190T) (Табл. 1).

Выделение суммарной мРНК проводили с использованием реактива TRI-Reagent (Mrcgene). Для выделения РНК из 50 мкг ткани печени, замороженной в азоте использовали 1 мл TRI-Reagent. Для постановки количественной ПЦР в реальном времени (RT-PCR) использованы наборы праймеров и TagMan-зондов производства фирмы Sintol (Москва). Реакцию проводили на амплификаторе с оптической насадкой iCycler iQ (BIO RAD, США).

Распределение генотипов по исследованным полиморфным локусам проверяли на соответствие равновесию Харди-Вайнберга (РХВ) с помощью критерия χ^2 (Вейр, 1995). Расчет наблюдаемой полокусной гетерозиготности проводили по формуле: $h_{\text{obs}} = \text{No/N}$, где No = ENjj - общее число всех гетерозигот в данной выборке (N); теоретическую гетерозиготность рассчитывали: $h_{\text{exp}} = 1 - \sum p_i^2$, где pi - частоты аллелей соответствующего локуса (Животовский, 1983). Ожидаемую гетерозиготность рассчитывали по M. Nei (1987). Относительное отклонение ожидаемой гетерозиготности от наблюдаемой (*D*) рассчитывали по формуле: $D=(h_{\text{obs}}-h_{\text{exp}})/h_{\text{exp}}$, где h_{obs} и h_{exp} — ожидаемая и наблюдаемая гетерозиготность соответственно.

Таблица 1. Характеристика изученных полиморфных вариантов генов

Ген	Локализация на хромосоме	Полиморфизм	Локализация в гене	Hoмер rs в базе данных NCBI	
IL12B	5,21 1 ,22 1	5-21 1 -22 1 A1188C		3212227	
	5q31.1-q33.1	G3563753T интрон 1		3212220	
IL12RB1	19p13.1	C2087T	3'UTR	3746190	
ILIZKDI	19p13.1	G531A	экзон 5	11575926	
IFNG	12p14	T-1488C	промотор	2069705	
IFNGR2	21p22.11	G-1704del	промотор	17880053	
CTLA4	2q33	G 49A	экзон 1	231775	
TLR4	9q33.1	C1196T	экзон 3	4986791	

Для оценки связи качественных признаков с исследуемыми генетическими маркерами использовали критерий χ^2 Пирсона с поправкой Иейтса на непрерывность при числе степеней свободы равном 1 и точный тест Фишера при ожидаемом числе наблюдений, хотя бы в одной из ячеек таблицы сопряженности менее 5. Для оценки ассоциаций полиморфных вариантов генов с патологическим фенотипом рассчитывали показатель отношения шансов (OR) по формуле: OR = ad/bc; где а — частота анализируемого аллеля у больных; b — частота анализируемого аллеля в контрольной выборке; с и d — суммарная частота остальных аллелей у больных и в контроле соответственно (Allison, 1997). Величина OR = 1 указывает на отсутствие ассоциации, OR>1 — имеет место при положительной ассоциации «фактор риска» и OR<1 — отрицательная ассоциация аллеля с заболеванием. Обсуждение величин OR проводили при уровне значимости не более 5%.

проведения ассоциаций количественных анализа признаков была выполнена проверка количественных показателей нормальность распределения по тесту Колмогорова-Смирнова. Кроме этого была введена поправка на возраст. Данная процедура выполнена по формуле: $y=x+b(t_0-t)$; где x- исходная величина исправляемого показателя; bкоэффициент линейной регрессии; t_0 средний возраст; t – исходный возраст (Животовский, 1983). В случае нормального распределения сравнение средних значений нескольких переменных проводили с помощью однофакторного распределения случае ненормального дисперсионного анализа, В непараметрическими методами Краскала-Уоллиса и Манна-Уитни (Allison, 1997).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Характеристика полиморфных вариантов генов *IL12B*(A1188C) и (rs3212220 G/T), *IL12RB*1 (C2087T) и (G531A), *IFNG* (T-1488C), *IFNGR2* (G-1704/-), *CTLA4* (G49A), *TLR4* (C1190T) у больных хроническим гепатитом

соответствия наблюдаемого распределения ожидаемому при равновесии Харди-Вайнберга (РХВ) было выявлено отклонение от РХВ для гена CTLA4 (G49A) в объединенной группе больных хроническим вирусным гепатитом (ХВГ) и в группе с ХВГС за счет 14% избытка гетерозигот, для гена IL12RB1 (C2087T) в группе больных алкогольным гепатитом за счет 23% избытка гетерозигот, а также для гена *IL12B* (A1188C) в объеденной группе больных хроническим гепатитом (ХГ), у больных ХВГ и у больных ХВГС за счет 15%, 13% и 19% недостатка гетерозигот соответственно. Распределение генотипов генов *IFNG*(T-1488C), *IFNGR2*(G-1704/) *TLR4*(C1196T) соответствовало ожидаемому при РХВ во всех исследованных группах больных. При сравнительном анализе частот изученных генов в группах больных ХГВ с данными литературы показано, что распространенность аллелей исследованных полиморфных вариантов находилась в пределах величин, описанных другими авторами.

Выявлено, что наибольшим уровнем полиморфизма в группе больных (ХГ) характеризовались нуклеотидные замены В генах *IL12RB1*(C2087T) 52% 55% CTLA4(G49A), где уровень гетерозиготности составил соответственно; в группе больных XBГС – вариант (G49A) гена *CTLA4* (56,8%), а у больных $XB\Gamma B$ и алкогольной болезнью печени — вариант (C2087T) гена IL12RB1 (59% и 58,9% соответственно). Наименьшим уровнем полиморфизма характеризовался вариант C1196T гена TLR4, гетерозиготность которого составила 10–19% во всех обследованных группах. Полиморфный вариант A1188C гена *IL12B* так же показал схожий уровень гетерозиготности во всех группах больных и находился в пределах от 19 до 31%.

Анализ ассоциаций исследованных полиморфных вариантов генов с хроническим вирусным и алкогольным гепатитом

В проведенного результате исследования было установлено статистически значимых различий в распределении генотипов и частот аллелей между группами больных ХГ и представителями контрольной группы по аллельным вариантам генов IL12B (A1188C) и (rs3212220 G/T), IL12RB1 (C2087T) и (G531A), IFNG (T-1488C), IFNGR2 (G-1704/-), CTLA4 (G49A), TLR4 (C1190T). Между группой больных ХВГ и контролем так же не было выявлено различий в частотах аллелей и генотипов по изученным вариантам генов. Поскольку группа больных ХГ представляет собой совокупность больных гепатитами разной этиологии, представлялось целесообразным рассмотреть каждую изученную подгруппу по отдельности. При разделении больных ХВГ на группы в зависимости от возбудителя, вызвавшего заболевание – РНК вирус HCV или ДНК вирус – HBV, выявлено, что группа больных XBГС отличалась от контрольной по частотам генотипов полиморфного варианта гена *IL12B* (A1188C) и по частотам аллелей и генотипов гена рецептора к IFN- γ – IFNGR2(G-1704/-) (табл. 2).

Различия в распределении частот генотипов гена IL12B (A1188C) обусловлены снижением частоты гетерозиготного генотипа «AC» в группе с ХВГС (19,45%) по сравнению с контролем (33,33%) (p=0,01; OR=0,48; 95% CI: 0,27-0,88) и повышением частоты гомозиготного генотипа «AA» у больных (76,21%) по сравнению с контрольной группой (64,58%) (p=0,05; OR=1,76; 95% CI: 0,99-3,12). Различия в частотах по полиморфному варианту IFNGR2(G-1704/-) происходят за счет более высокой частоты генотипа «GG» (75,67%) и более низкой частоты аллеля, несущего делецию – «-» (12,77%) у больных ХВГС по сравнению с контрольной группой ((62,50%; p=0,02; OR=1,98; 95% CI: 1,08-3,37) и (19,27%; p=0,05; OR=0,61; 95% CI: 0,37-1,00) соответственно).

Группа больных с АБП характеризовалась повышенной частотой носителей генотипа «ТТ» (8,9%) полиморфного варианта гена IL12B (rs3212220 G/T) и более высокой частотой гетерозиготного генотипа «СТ» (59,5%) гена рецептора к IL12 - IL12RB1 (C2087T) по сравнению с контрольной группой ((2,1%; p=0,05; OR=4,64; 95% CI: 0,88-32,64) и (43,7%; p=0,04; OR=1,89; 95% CI: 1,01-3,55), соответственно) (табл. 2). В группе больных АБП так же наблюдается повышение частоты гомозиготного генотипа «GG» гена IFNGR2(G-1704/-) до

73,2% по сравнению с контрольной группой, где частота данного генотипа находится на уровне 62,5%, но различия не достигают принятого уровня статистической значимости (табл. 2).

Значимые различия выявлены между группами больных ХВГС (12,7%) и ХВГВ (23,4%) в частотах делеционного аллеля «-» гена *IFNGR2* (G-1704/-) (p=0,01; OR=2,11; 95% CI: 1,15-3,85) (табл. 2). Причем, для ХВГС частота данного аллеля значимо ниже, чем в контрольной группе и для этой формы патологии аллель «-» может быть определен как протективный. Тогда как, для ХВГВ частота данного аллеля повышается по сравнению с контрольной группой, но различия не достигают 5% уровня значимости (табл. 2).

Таким образом, в настоящем исследовании показано, что на подверженность к ХВГС влияют полиморфные варианты генов IL12B (A1188C) и IFNGR2(G-1704/-). Причем фактором, увеличивающим риск хронизации инфекции является генотип «GG» гена IFNGR2(G-1704/-). Генотип «AA» полиморфного варианта гена IL12B (A1188C) также может оказывать влияние на подверженность к хронизации вирусного гепатита С. Фактором, снижающим риск хронизации гепатита С, является аллель «-» полиморфного варианта гена *IFNGR2*(G-1704/-). Для XBГВ не показано статистически значимых различий в частотах генотипов и аллелей исследованных генов. Но, на примере разнонаправленного изменения частот данных показателей гена IFNGR2(G-1704/-) у больных XBГС и XBГВ можно предположить, что генетическая составляющая подверженности к данным патологиям будет различной. В подверженность к алкогольной болезни печени могут вносить вклад гены *IL12B* (rs3212220 G/T) и *IL12RB1* (C2087T). На основе полученных результатов можно предположить, что полиморфный вариант гена IFNGR2(G-1704/-) является общим в развитии гепатитов разной этиологии и влияет на предрасположенность к ХВГС, ХВГВ и АБП. Структура подверженности к ХВГВ отличается от таковой для ХВГС. Подверженность к АБП может определяться общими генами как для ХВГС, так и для ХВГВ.

Анализ ассоциаций изученных полиморфных вариантов генов с морфологическими особенностями течения заболевания

При изучении связи полиморфных вариантов генов *IL12B* (rs3212220 G/T), *IL12RB1* (C2087T) и (G531A), *IFNG* (T-1488C), *IFNGR2* (G-1704/-), *CTLA4* (G49A), TLR4 (C1190T) со стадией фиброза у больных XBГ, не было выявлено достоверных различий в частотах аллелей и генотипов в исследованных подгруппах больных XBГ. В группе больных циррозом печени было выявлено увеличение частоты носителей гетерозиготного генотипа «AC» гена *IL12B* (A1188C) (39,3%) по сравнению с объединенной группой, включающей больных с I и II стадией фиброза печени (15,5%) (рис.1). В группе больных циррозом печени (III группа) наблюдалось накопление аллеля «С» (23,2%) по сравнению с фиброзом легкой и средней степени тяжести (I+II Группы) (12,2%). Это не согласуется с данными, полученными для больных XBГС в Индии, где частота аллеля С выше у больных мягким фиброзом по сравнению с тяжелым, что говорит о протективной роли аллеля «С» относительно тяжести течения вирусного гепатита С (Suneetha, 2006). Кроме этого, в настоящем исследовании

выявлены различия по частотам генотипов и аллелей по полиморфному варианту гена *CTLA4* (A49G) у больных XBГС, разделенных в зависимости от стадии фиброза печени. Выявлено накопление генотипа «GG» и и аллеля «G» в зависимости от увеличения стадии фиброза печени. В группе больных циррозом печени (III группа) выявлена наиболее высокая частота генотипа «GG» и аллеля «G» по сравнению с больными XBГС с легкой и средней тяжестью заболевания (I+II группы) (p=0,04; OR=2,83 (1,09-8.15)) и (p=0,04; OR=1,66 (1,02-2,68)) соответственно (рис. 2).

Таблица 2. Аллели и генотипы, являющиеся предрасполагающими и протективными при разных формах XГ

Form	Гено-	Конт- роль (%)	Частота (%) рискового/протективного генотипа/аллеля, р					
Ген	ТИП		ХВГС		ХВГВ		АБП	
	аллель		*	**	*	**.	*	**
<i>IL12B A 1188</i> C	«AA»	64,6	76,2 p=0,05	-	-	-	-	-
	«AC»	33,3	-	19,4 p=0,01	-	-	1	1
IL12B rs3212220 G/T	«TT»	2,0	5,4 p=0,23	-	-	-	8,9 p=0,05	-
IL12RB1 C2087T	«CT»	43,7	-	-	59,6 p=0,12	-	59,5 p=0,04	-
	«CC»	41,7	-	-	-	25,5 p=0,08	1	1
IFNGR2 G-1704/-	«GG»	62,5	72,7 p=0,02	-		-	73,2 p=0,17	-
	<<->>	19,3	-	12,7% p=0,05	23,4 p=0,51	-	-	-

Примечание. р — уровень значимости, полученный тестом χ^2 при сравнении частот аллелей и генотипов между группами больных и контрольной группой; * - аллель или генотип, увеличивающие риск развития патологии; ** - аллель или генотип, уменьшающие риск развития патологии.

Глутатион S-трансферазы (GSTs) представляют собой семейство ферментов, необходимых для детоксикации различных химических соединений, в том числе лекарств и эндогенных метаболитов. Ферменты GSTs принимают участие в метаболизме химически активного кислорода, продуцируемого воспалительных процессах и необходимы для поддержания целостности генома. Отсутствие ферментативной активности глутатион S-трансфераз приводит к накоплению эндогенных мутагенов и продуктов окислительного стресса. Такое состояние может приводить к развитию различных патологий печени, поскольку детоксикация метаболитов и чужеродных соединений протекает в гепатоцитах. Ранее было показано, что делеционный полиморфизм генов GSTT1 и GSTM1 вносит вклад в развитие алкогольной болезни печени (Ladero, 2005; Stickel, 2006;) и гепатоцеллюлярной карциномы (White, 2007). Поскольку ранее уже была показана ассоциация генов *GSTT1* и *GSTM1* с алкогольной болезнью печени, то в настоящем исследовании было проведен только анализ вклада данных полиморфизмов в подверженность к циррозу печени при XBГС.

Не было выявлено связи между генотипами по генам GSTT1 и GSTM1 и циррозом печени у больных XBГС. Частоты «нулевых» генотипов генов GSTT1 и GSTM1 не отличались между больными циррозом печени, вызванным воздействием вируса HCV и контрольной группой и распределялись следующим образом: для гена GSTT1 частота «нулевого» генотипа в группе больных и контроле составила 23,3% и 22,1% (p=0,50)соответственно; для гена GSTM1-50% и 65,5% (p=0,17).

Таким образом, в настоящем исследовании выявлено, что генетическими факторами, предрасполагающими к тяжелому течению ХВГС и развитию цирроза печени, являются гетерозиготный генотип «АС» полиморфного варианта гена IL12B (A1188C), а так же аллель «G» и генотип «GG» полиморфного варианта гена CTLA4 (A49G).

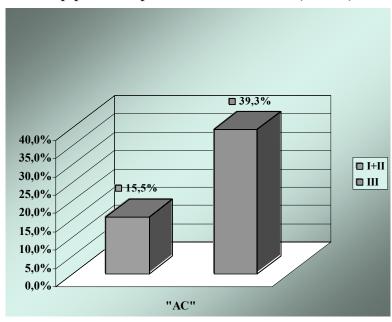


Рис. 1. Частоты гетерозиготного генотипа «АС» полиморфного варианта гена *IL12B* (А1188С) в группах больных с циррозом печени (III) и умеренной и средней стадией фиброза (I+II), (p=0,004; OR=3,74 (1,42-9,81))

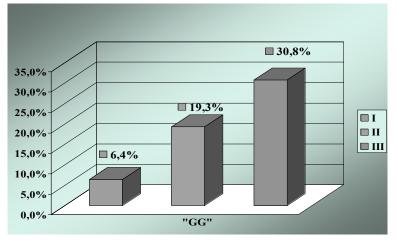


Рис. 2. Частоты генотипа «GG» полиморфного варианта гена *CTLA4* (A49G) у больных XBГС с разными стадиями фиброза печени.

Ассоциации исследованных полиморфных вариантов генов с патогенетически значимыми для течения хронического вирусного гепатита количественными признаками

результате проведенного исследования было установлено, генетический статус человека по полиморфным вариантам исследованных генов IL12B (A1188C) и (rs3212220 G/T), IFNG (T-1488C), IFNGR2 (G-1704/-), CTLA4 (G49A) является фактором, определяющим уровень биохимических показателей крови, количественное содержание цитокинов, фракций гидроксипролина, у больных хроническими вирусными гепатитами. Биохимические показатели аланин-аминотрансферазы как уровень (АЛТ), аминотрансферазы (АСТ), билирубина (Бил), активность щелочной фосфотазы (ЩФ), тимоловая проба (ТП), служат для определения функционального состояния печени в норме и при различных патологиях. Синдром цитолиза оценивается путем определения активности в сыворотке крови «печеночных» ферментов АЛТ и АСТ. Состояние пигментного обмена оценивается по уровню общего билирубина и его фракций в сыворотке крови. Показатель синдрома холестаза определется по уровню активности ЩФ. Синтетическую функцию протромбиновый характеризует индекс (ПТИ). Для мезенхимально-воспалительного синдрома используется показатель ТΠ (Камышников, 2000).

В настоящем исследовании было показано, что из всех изученных полиморфных вариантов с биохимическими показателями крови у больных ХВГС ассоциированы полиморфные варианты генов *IL12B* (A1188C), IFNGR2 (G-1704/-), CTLA4(G49A) (табл. 3-5). Выявлено, что носители гомозиготного генотипа «СС» гена IL12B (A1188C) показывают более высокий ПТИ по сравнению с носителями других генотипов (табл. 3). Гомозиготы по делеции (-/-) характеризуются более высокими показателями уровня общего билирубина в сыворотке крови (41,13 мкмоль/л) по сравнению с носителями генотипов «GG» (24,25 мкмоль/л) и «G/-» (21,66 мкмоль/л) (табл. 3, 5). Кроме этого, у больных с генотипом (-/-) наблюдался повышенный уровень тимоловой пробы (6,3 ед.) по сравнению с носителями других генотипов («G/G» – 4,16 ед., (G/-) – 4,78 ед.)(табл. 3). Поскольку ассоциации количественных признаков с полиморфным вариантом IFNGR2 (G-1704/-) ранее не проводились, то сравнить полученные результаты c литературными данными представляется аминотрансфераз возможным. уровнем АЛТ ACT ассоциирован И полиморфный вариант гена СТLA4 (G49A). Показано что, генотип «AA» ассоциирован с более высоким уровнем АЛТ у больных ХВГС по сравнению с другими генотипами. В то же время гетерозиготный генотип «АG» связан с более низкими значениями АЛТ и АСТ у больных ХВГС (табл. 3).

У больных ХВГВ с биохимическими показателями крови ассоциированы полиморфные варианты генов IFNG (T-1488C) и TLR4 (C1196T). Показано что для гомозиготного генотипа «ТТ» варианта (T-1488C) гена IFNG характерен более низкий уровень АСТ (46,6 Ед/л) по сравнению с генотипами «СС» (74,5 Ед/л) и «СТ» (89,8 Ед/л). При объединении генотипов «СС+СТ» так же показаны

статистически значимые различия в уровне АСТ в сыворотке крови у больных ХВГВ. В этой же группе было выявлено изменение показателей тимоловой пробы в зависимости от генотипа по полиморфному варианту гена *TLR4* (С1196Т). Выявлено, что у гетерозиготных носителей «СТ» данного варианта наблюдается сниженные показатели тимоловой пробы по сравнению с номителями генотипа «СС».

Таким образом, при ХВГС носители генотипа (-/-) полиморфного варианта гена *IFNGR2* (G-1704/-) и генотипа «АА» гена *CTLA4* (G49A) будут характеризоваться более высоким уровнем повреждения гепатоцитов и степенью выраженности мезенхимального воспаления. В то же время, носители гетерозиготного генотипа «АG» гена *CTLA4* (G49A) будут характеризоваться меньшей степенью повреждения гепатоцитов по сравнению с носителями других генотипов. При ХВГВ носители генотипов «ТТ» гена *IFNG* (T-1488C) и «СТ» гена *TLR4* (C1196T) будут характеризоваться меньшим уровнем некроза и дистрофии гепатоцитов по сравнению с носителями других генотипов.

В настоящем исследовании получены данные о наличии зависимости продукции IL-4, IL-12, IFN-γ от генотипов полиморфных вариантов гена *IL12B* (A1188C) и (rs3212220 G/T), что согласуется с представлением о цитокинах, как о молекулах, для которых характерны дублирующие, перекрывающиеся эффекты и взаимное влияние на динамику выработки друг друга при взаимодействиях в каскадах единой регуляторной сети.

В результате проведенного анализа было установлено, что для больных ХВГС носителей генотипа «СС» полиморфного варианта (A1188C) и генотипа «ТТ» варианта (rs3212220 G/T) гена IL12B характерно повышенное содержание IFN-γ и IL4 и пониженное содержание IL12 сыворотке крови по сравнению с носителями генотипов «АА+АС» и «ТG+GG» (табл. 4, 5). Поскольку группа больных ХВГВ немногочисленна, не было получено данных об ассоциациях генотипов по изученным полиморфным вариантам генов с уровнем цитокинов. Полученные в настоящем исследовании результаты об ассоциации генотипа «СС» с пониженным содержанием IL12 в сыворотке крови согласуются с данными литературы. Ранее было показано, что аллель «С» полиморфного варианта (A1188C) гена IL12B, понижает экспрессию данного цитокина, в то время как генотип «AA» ассоциирован с повышением экспрессии IL12 in vitro (Morahan, 2001). Однако, на этот счет существуют противоречивые мнения. В частности, при исследовании полиморфизма гена IL12B и исхода вирусного гепатита С, отмечена предрасположенность к хронизации воспалительного ответа у пациентов являющихся носителями генотипа «АА», что по мнению авторов связано с пониженным уровнем экспрессии гена IL12B (Houldsworth, 2005). Установленная данном исследовании закономерность разнонаправленности выработки ИЛ-4 и IL12, выявленная для генотипа «СС» *IL12B*(A1188C) подтверждает генетическую детерминированность взаимоингибирования про- и противовоспалительных цитокинов.

Ключевую роль в катаболизме коллагена играет протеолитический фермент – коллагеназа (Alberti, 1999; Brassart, 1998).

Таблица 3. Зависимость биохимических показателей крови от генотипов исследованных полиморфных вариантов у больных ХВГС

Ген	Генотип	АЛТ	ACT	Бил	ТΠ	ЩФ	ПТИ
	AC	$92,5 \pm 11,4$	$82,2 \pm 9,8$	$26,5 \pm 5,5$	4.8 ± 0.4	$193,8 \pm 18,4$	$92,3 \pm 2,1$
IL12B	AA	$85,9 \pm 5,7$	$68,8 \pm 5,0$	$23,0 \pm 2,8$	$4,2 \pm 0,2$	$176,6 \pm 9,4$	$94,2 \pm 1,1$
	CC	$61,1 \pm 25,2$	$53,4 \pm 22,0$	$10,7 \pm 12,4$	$3,02 \pm 0,9$	$200,1 \pm 41,2$	$103,5 \pm 4,7$
H= (p=)		2,13 (0,34)	3,68 (0,16)	5,76 (0,056)	5,04 (0,08)	1,24 (0,54)	6,22 (0,04)
	G/-	84.8 ± 10.4	$68,9 \pm 9,1$	$21,6 \pm 5,8$	4.8 ± 0.4	$204,6 \pm 18,5$	$93,1 \pm 2,1$
IFNGR2	G/G	$87,0 \pm 5,85$	$71,6 \pm 5,1$	$24,2 \pm 3,1$	$4,2 \pm 0,2$	$176,1 \pm 10,0$	$95,1 \pm 1,1$
	-/-	$66,6 \pm 38,6$	$46,0 \pm 33,8$	$41,1 \pm 20,0$	$6,3 \pm 1,4$	$324,6 \pm 63,2$	$75,6 \pm 7,1$
H= (p=)		0,31 (0,86)	0,49 (0,78)	5,10 (0,08)	6,54 (0,04)	4,65 (0,10)	3,37 (0,19)
CTLA4	AG	$74,4 \pm 6,8$	$56,0 \pm 5,7$	$22,1 \pm 3,7$	$4,1 \pm 0,2$	$179,5 \pm 12,4$	$93,2 \pm 1,3$
	AA	$105,8 \pm 9,6$	$82,5 \pm 8,0$	$23,2 \pm 5,3$	$4,6 \pm 0,3$	$198,9 \pm 17,4$	$97,2 \pm 1,9$
	GG	$99,8 \pm 12,6$	$97,1 \pm 10,6$	$27,9 \pm 6,8$	$4,7 \pm 0,4$	$199,0 \pm 22,5$	$93,6 \pm 2,5$
H= (p=)	<u> </u>	6,79 (0,03)	7,24 (0,03)	0,14 (0,93)	3,15 (0,21)	1,68 (0,43)	3,52 (0,17)

Примечание. Н - значение критерия Краскала-Уоллиса; р — уровень значимости, полученный непараметрическим критерием Краскала-Уоллиса.

Таблица 4. Уровни цитокинов, α_1 - протеиназного ингибитора и фибронектина в зависимости от генотипов по исследованным полиморфным вариантам генов у больных XBГС

Ген	Генотип	IFN-γ	IL4	IL12	α_1 -ПИ	ФН
IL12B	AC	$115,7 \pm 32,9$	$40,9 \pm 12,69$	$273,9 \pm 62,9$	$32,4 \pm 3,6$	$189,2 \pm 15,5$
	AA	$78,6 \pm 16,0$	$37,1 \pm 6,1$	$238,9 \pm 27,7$	$33,1 \pm 1,7$	$156,6 \pm 9,1$
	CC	$243,3 \pm 57,0$	$107,6 \pm 21,9$	$55,4 \pm 96,2$	$31,3 \pm 8,9$	$108,0 \pm 51,5$
H= (p=)		5,32 (0,07)	4,87 (0,09)	5,02 (0,08)	0,01 (0,98)	6,17 (0,04)
	TG	$125,5 \pm 22,3$	$43,3 \pm 8,9$	$210,8 \pm 44,2$	$33,4 \pm 2,4$	$179,4 \pm 12,3$
IL12B	GG	$61,0 \pm 17,6$	$34,5 \pm 7,0$	$260,9 \pm 30,7$	$32,8 \pm 2,1$	$151,9 \pm 10,7$
	TT	$243,3 \pm 54,7$	$107,6 \pm 21,8$	$55,4 \pm 95,5$	$32,1 \pm 7,5$	$163,0 \pm 37,1$
H= (p=)	9,56 (0,01)	6,54 (0,04)	5,04 (0,08)	0,01 (0,99)	4,16 (0,12)
	TT	$95,5 \pm 28,9$	$51,7 \pm 11,6$	$67,9 \pm 5,2$	$39,1 \pm 8,7$	$154,4 \pm 14,9$
IFNG	CT	$90,0 \pm 28,9$	$45,2 \pm 11,6$	$58,9 \pm 4,9$	$17,9 \pm 8,2$	$189,6 \pm 10,1$
	CC	$156,0 \pm 48,3$	$60,2 \pm 19,5$	$88,5 \pm 13,8$	$34,1 \pm 23,2$	$97,0 \pm 27,9$
H= (p=)	0,11 (0,95)	0,40 (0,82)	0,56 (0,76)	5,95 (0,05)	1,25 (0,53)

Примечание. Н - значение критерия Краскала-Уоллиса; р — уровень значимости, полученный непараметрическим критерием Краскала-Уоллиса

Таблица 5. Ассоциации генотипов исследованных генов с количественными признаками у больных ХВГС, рассчитанные по критерию Манна-Уитни

Ген	Генотип	IFN-γ	IL4	IL12	Бил	α1-ПИ
IL12B	CC	243,3±140,1	107,7±57,5	55,5±8,9		
(A/C)	AA+AC	85,7±96,6	37,9±36,6	244,6±169,1		
	P	0,022	0,032	0,027		
IL12B	TT			55,5±8,9		
(T/G)	TG+GG			244,6±169,1		
	Р			0,028		
IFNGR2	-/-				41,1±13,7	
(G/-)	GG+G/-				22,9±33,1	
	P				0,023	
IFNG	CT					17,9±8,2
(T/C)	CC+TT					36,6±19,2
	P					0,016

Синтез коллагеназы клетками контролируется цитокинами IL1, IL6, IL10, IFN- γ и IFN- β , трансформирующим фактором роста (TGF) α и β , TNF- α и т. д. Торможение синтеза осуществляется посредством IL4, IL11, IL13, IFN- γ , TGF- β . Кроме того, доказано, что активность коллагеназы ингибируется рядом сывороточных факторов, среди которых главную роль играет α 2-макроглобулин (α 2-МГ). Деградация коллагена под влиянием коллагеназы сопровождается увеличением содержания оксипролина (гетероциклическая аминокислота – специфическая составная часть белков соединительной ткани – коллагена и эластина) (Ishii , 2000).

Количественные показатели содержания общего (ОбО), свободного (СО), пептидо-связанного (ПСО) и белково-связанного (БСО) оксипролина в биологических жидкостях являются доступными маркерами оценки состояния обмена коллагена (Ishii, 2000; Brassart, 1998). Основным лимитирующим фактором развития фиброза является α_2 -МГ — гликопротеид, который ограничивает фиброгенез, является основным ингибитором коллагеназы (Пинцани, 2002). α_2 -МГ является универсальным ингибитором, подавляющим активность протеиназ всех четырех классов: сериновых, тиоловых, кислых и металлопротеиназ (трипсин, химотрипсин, тромбин, калликреин, плазмин) крови и тканей.

В настоящем исследовании было показано, что активность протеолитических ферментов, уровень фибронектина и фракций гидроксипролина не изменялась в зависимости от генотипов по полиморфными вариантам всех исследованных генов, кроме *IFNG* (T-1488C). Было выявлено,

что для носителей гетерозиготного генотипа «СТ» характерна более низкая концентрация α_1 -протеиназного ингибитора в сыворотке крови по сравнению с носителями генотипов «СС» и «ТТ» (табл. 5). Дефицит этого фермента приводит к дисбалансу в системе протеиназы-антипротеиназы, в результате чего накапливаются протеолитические энзимы, повреждающие ткани. Можно предположить, что носители генотипа «СТ» будут характеризоваться более тяжелым повреждением печени при хроническом течении вирусного гепатита С.

Функционирование генов иммунного ответа при заболеваниях печени различной этиологии

В настоящей работе было проведено сравнение уровня экспрессии генов иммунного ответа IL12B, IL12RB1, IFNG, IFNGR2, CTLA4, TLR4 между больными XBГС, XBГВ и АБП. Интерлейкин-12 играет центральную роль в развитии эффективного клеточного иммунного ответа, направленного на элиминацию внутриклеточных патологических агентов. При понижении уровня экспрессии гена IL12B чувствительность к инфекциям повышается, так как в этом случае наблюдается недостаточная продукция IFN- γ (Elloumi-Zghal, 2002).

В настоящем исследовании показано, что уровень экспрессии гена IL12B в тканях печени у больных ХВГС был в 5,56±0,342 раз выше чем у больных АБП (рис. 1). У больных ХВГВ уровень экспрессии гена IL12B был в 4,02±0,486 раза выше, чем в группе больных АБП (рис.3). Уровень экспрессии гена IL12B не отличался между больными ХВГС и ХВГВ (рис.3). Для гена рецептора к IL12-IL12RB1 не было показано различий между группами больных ХВГС, ХВГВ и АБП.

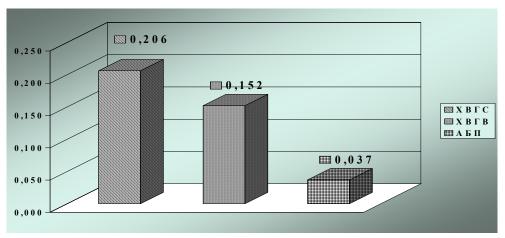


Рис. 3. Значения уровней экспрессии гена *IL12B* у больных XBГС, XBГВ и AБП.

Гамма-интерферон регулирует иммунный ответ, и выраженность воспалительных реакций Он продуцируется активированными Т-клетками и естественными киллерами. Интерферон гамма обладает самостоятельным антивирусным и противоопухолевым эффектом. Его противовирусный эффект заключается в подавлении синтеза как вирусной РНК, так и белков оболочки вируса.

В настоящем исследовании показано, что среди исследованных групп наибольший уровень экспрессии гена *IFNG* наблюдается у больных ХВГВ (рис. 4). Выявлены двукратные различия в уровне экспрессии гена *IFNG* между

группами пациентов ХВГВ и АБП. В группах больных ХВГС и ХВГВ не выявлено различий с уровнем экспрессии гена *IFNG* (рис 4.). Ген *IFNGR2* экспрессировался на одном и том же уровне в тканях печени во всех исследованных группах больных.

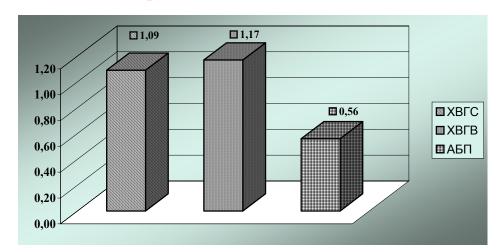


Рис. 4. Значения уровней экспрессии гена *IFNG* у больных ХВГС, ХВГВ и АБП.

СТLА-4 — член семейства иммуноглобулиноподобных молекул и является костимуляторной молекулой, экспрессируемой активированными Т клетками. Молекула СТLА-4 является ингибирующим рецептором, который ограничивает Т-клеточную активацию. Эксперементальные исследования показали, что СТLА4 является необходимым компонентом, модулирующим иммунный ответ при ВГВ и ВГС может быть терапевтической мишенью для лечения этих заболеваний (Yu, 2009; Itose, 2009).

В настоящем исследовании выявлено что, наибольший уровень экспрессии гена гена СТLA4 наблюдался в группе пациентов с ХВГС, наименьший – с ХВГВ, группа больных АБП занимала промежуточное положение. Но, поскольку кратность различий между группами не достигала пограничного значения (в 2 раза), то результаты не являются статистически достоверными.

Toll-подобные рецепторы – TLR играют центральную роль в распознавании антигена и инициации врожденного иммунитета. При вирусных гепатитах TLR непосредственно вовлечены в развитие реакций организма на HCV- и вирусы, патогенез И исход заболеваний. Выявлено, что вирус экспрессию TLR4 посредством непосредственно индуцирует промотора гена вирусным белком NS5A. У больных XBГС показано 3-7 кратное TLR4 экспрессии гена В увеличение уровня мононуклеарных периферической крови по сравнению со здоровыми донорами (Machida, 2006). В настоящем исследовании не показано различий в уровне экспрессии гена TLR4 в гепатоцитах больных ХАГС, ХАГВ и АБП.

ЗАКЛЮЧЕНИЕ

При изучении полиморфных вариантов генов иммунной системы IL12B (A1188C и rs3212220 G/T); IL12RB1 (G531A и C2087T); IFNG (T-1488C); IFNGR2 (G-1704/-); TLR4 (C1196T); CTLA (G49A) у больных хроническими гепатитами С (ХВГС) и В – (ХВГВ), АБП и в контрольной группе было показано, что частоты исследованных генов во всех группах находилась в

пределах величин, характерных для европеоидных популяций мира. У больных ХВГС наибольший уровень полиморфизма и отклонение от РХВ было выявлено для SNP гена *CTLA4* (G49A). Отклонение от РХВ в данной группе больных было выявлено так же для варианта (A1188C) гена *IL12B*. У больных ХВГВ и АБП наибольший уровень полиморфизма выявлен для *IL12RB1* (C2087T), а так же отклонение от РХВ в группе больных АБП.

При оценке ассоциации выбранных полиморфных вариантов генов с заболеваниями печени различной этиологии выявлено, что группа больных ХВГС отличалась от контрольной по частотам генотипов полиморфного варианта гена IL12B (A1188C) и по частотам аллелей и генотипов гена рецептора к IFN- γ – IFNGR2(G-1704/-).

Группа больных с АБП характеризовалась повышенной частотой носителей генотипа «ТТ» полиморфного варианта гена IL12B (rs3212220 G/T) и более высокой частотой гетерозиготного генотипа «СТ» гена рецептора к IL12 - IL12RB1 (C2087T) по сравнению с контрольной группой.

Выявлены значимые различия между группами больных ХВГС и ХВГВ в частотах аллеля, несущего делецию «-» гена *IFNGR2* (G-1704/-) Причем, для ХВГС частота данного аллеля была значимо ниже, чем в контрольной группе, тогда как, для ХВГВ частота данного аллеля повышалась по сравнению с контрольной группой, но различия не достигли 5% уровня значимости.

Таким образом, в настоящем исследовании показано, что на подверженность к ХВГС влияют полиморфные варианты генов *IL12B* (A1188C) и *IFNGR2* (G-1704/-). Причем фактором, увеличивающим риск хронизации инфекции является генотип «GG» гена *IFNGR2* (G-1704/-) и генотип «AA» полиморфного варианта гена *IL12B* (A1188C) Фактором, снижающим риск хронизации гепатита С, является аллель «-» полиморфного варианта гена *IFNGR2* (G-1704/-).

Для ХВГВ не показано статистически значимых различий в частотах генотипов и аллелей исследованных генов. Но, на примере разнонаправленного изменения частот данных показателей гена IFNGR2(G-1704/-) у больных ХВГС и ХВГВ можно предположить, что генетическая составляющая подверженности к данным патологиям будет различной. В подверженность к алкогольной болезни печени вносят вклад гены IL12B (rs3212220 G/T) и IL12RB1 (C2087T).

При изучении связи полиморфных вариантов генов *IL12B* (rs3212220 G/T), *IL12RB1* (C2087T) и (G531A), *IFNG* (T-1488C), *IFNGR2* (G-1704/-), *CTLA4* (G49A), TLR4 (C1190T) со стадией фиброза у больных XBГС, не было выявлено достоверных различий в частотах аллелей и генотипов в исследованных подгруппах. Так же не было выявлено различий в частотах «нулевых» генотипов генов *GSTT1* и *GSTM1* между больными циррозом печени и контролем. В группе больных циррозом печени было показано увеличение частоты носителей гетерозиготного генотипа «AC» гена *IL12B* (A1188C) (39,3%) по сравнению с объединенной группой, включающей больных с I и II стадией фиброза печени (15,5%). В группе больных циррозом печени наблюдалось накопление аллеля «С» по сравнению с объединенной группой (фиброз легкой и средней степени тяжести) (12,2%) Кроме этого, выявлено накопление генотипа «GG» и и аллеля «G» варианта гена *CTLA4* (A49G) в зависимости от увеличения стадии фиброза

печени. Таким образом, в настоящем исследовании показано, что генетическими факторами, предрасполагающими к тяжелому течению ХВГС и развитию цирроза печени, являются гетерозиготный генотип «АС» полиморфного варианта гена IL12B (A1188C) и аллель «G» и генотип «GG» полиморфного варианта гена CTLA4 (A49G).

С биохимическими показателями крови у больных ХВГС ассоциированы полиморфные варианты генов *IL12B* (A1188C), *IFNGR2*(G-1704/-) и *CTLA4*(G49A). Выявлено, что носители гомозиготного генотипа «СС» гена *IL12B* (A1188C) показывают более высокий протромбиновый индекс (ПТИ) по сравнению с носителями других генотипов.

Таким образом, при ХВГС для носителей генотипа (-/-) полиморфного варианта гена *IFNGR2* (G-1704/-) и генотипа «AA» гена *CTLA4* (G49A) характерен более высокий уровнень повреждения гепатоцитов и степенью выраженности мезенхимального воспаления. В то же время, для носителей гетерозиготного генотипа «AG» гена *CTLA4* (G49A) характерна меньшая степень повреждения гепатоцитов по сравнению с носителями других генотипов.

У больных ХВГВ с биохимическими показателями крови ассоциированы полиморфные варианты генов *IFNG* (T-1488C) и *TLR4* (C1196T). При ХВГВ носители генотипов «ТТ» гена *IFNG* (T-1488C) и «СТ» гена *TLR4* (C1196T) будут характеризоваться меньшим уровнем некроза и дистрофии гепатоцитов по сравнению с носителями других генотипов.

В результате проведенного анализа было установлено, что для больных XBГС носителей генотипа «СС» полиморфного варианта (A1188C) и генотипа «ТТ» варианта (rs3212220 G/T) гена IL12B характерно повышенное содержание IFN- γ и IL4 и пониженное содержание IL12 в сыворотке крови по сравнению с носителями генотипов «AA+AC» и «TG+GG».

Не было получено статистически значимых изменений количества IFN-γ в зависимости от генотипа по полиморфному варианту гена *IFNG* (T-1488C), хотя у носителей генотипа «СС» отмечалось повышенное содержание белка по сравнению с носителями генотипов «ТТ» и «СТ».

В настоящем исследовании было показано, что активность протеолитических ферментов, уровень фибронектина и фракций гидроксипролина не изменялась в зависимости от генотипов по полиморфными вариантам всех исследованных генов, кроме *IFNG* (T-1488C).

Было выявлено, что в группе больных $XB\Gamma C$ для носителей гетерозиготного генотипа «CT» характерна более низкая концентрация α_1 -протеиназного ингибитора в сыворотке крови по сравнению с носителями генотипов «CC» и «TT». В связи с этим носители генотипа «CT» будут характеризоваться более тяжелым повреждением печени при хроническом течении вирусного гепатита C.

Таким образом, выявлено, что: - полиморфные варианты гена IL12B (A1188C) и (rs3212220 G/T) ассоциированы с уровнем цитокинов (IL4, IL12, IFN- γ) и протромбиновым индексом у больных XBГС; - делеционный полиморфизм в промоторной области гена IFNGR2 (G-1704/-) ассоциирован с уровнем общего билирубина, показателями тимоловой пробы, концентрацией α_1 -протеиназного ингибитора у больных XBГС и уровнем АСТ у больных XBГВ; - полиморфизм

гена *IFNG* (T-1488C) влияет на уровень α_1 -протеиназного ингибитора у больных XBГС; - полиморфный вариант гена *CTLA4* (G49A) ассоциирован с такими биохимическими показателями как ACT и AЛТ у больных XBГС; - полиморфный вариант гена *TLR4* (C1196T) оказывает влияние на показатели тимоловой пробы у больных XBГВ.

При изучении паттерна экспрессии генов иммунной системы (IL12B; IL12RB1; IFNG; IFNGR2; TLR4; CTLA) при заболеваниях печени вирусной и не вирусной этиологии было выявлено, что при ХВГС в гепатоцитах наблюдается увеличение экспрессии гена IL12B, при ХАГВ — увеличение экспрессии генов IL12B и IFNG. Алкогольная болезнь печени характеризуется угнетением экспрессии генов IL12B и IFNG по сравнению с уровнем экспрессии этих генов, наблюдаемым при вирусных гепатитах.

ВЫВОДЫ

- 1. У русских жителей г. Томска, больных хроническими вирусными гепатитами В и С и алкогольной болезнью печени, частоты полиморфных вариантов генов *IL12B* (A1188C и rs3212220 G/T), *IL12RB1* (G531A и C2087T), *IFNG* (T-1488C), *IFNGR2* (G-1704/-), *TLR4* (C1196T), *CTLA* (G49A) находятся в переделах значений, полученных для европеоидных популяций мира. При ХВГС наибольший уровень полиморфизма характерен для варианта G49A гена *CTLA4*, а при ХВГВ для варианта C2087T гена *IL12RB1*
- 2. Генетическая составляющая подверженности к заболеваниям печени вирусного и алкогольного генеза различна: в подверженность к ХВГС вносят вклад генотип «GG» полиморфного варианта гена *IFNGR2* (G-1704/-) и генотип «AA» полиморфного варианта гена *IL12B* (A1188C); на подверженность к алкогольной болезни печени влияют генотип «TT» полиморфного варианта гена *IL12B* (rs3212220 G/T) и генотип «CT» *IL12RB1* (C2087T).
- 3. Генетическими факторами, предрасполагающими к тяжелому течению XBГС и развитию цирроза печени, являются гетерозиготный генотип «AC» полиморфного варианта гена *IL12B* (A1188C), аллель «G» и генотип «GG» полиморфного варианта гена *CTLA4* (A49G).
- 4. При ХВГС генотип «СС» полиморфного варианта гена *IL12B* (A1188C) ассоциирован с повышенным уровнем цитокинов IFNγ, IL4, и пониженным уровнем IL12, а так же повышением протромбинового индекса; генотип (-/-) варианта гена *IFNGR2* (G-1704/-) с высоким уровнем общего билирубина и тимоловой пробы; генотип «АG» варианта гена *CTLA4* (G49A) с пониженным уровнем аминотрансфераз АСТ и АЛТ; генотип «СТ» *IFNG* (T-1488C) характеризуется более низкой концентрацией α₁-протеиназного ингибитора.
- 5. При ХВГВ для носителей гомозиготного генотипа «ТТ» варианта (Т-1488С) гена *IFNG* характерен более низкий уровень АСТ; для носителей генотипа «СТ» *TLR4* (С1196Т) наблюдается сниженные показатели тимоловой пробы.

- 6. Анализ экспрессии изученных генов в биоптатах печени показал увеличение экспрессии гена *IL12B* при XBГС и генов *IL12B* и *IFNG* при XBГВ относительно АБП, которая характеризовалась угнетением экспрессии данных генов.
- 7. В развитие заболеваний печени различной этиологии наибольший вклад вносит ген *IL12B* поскольку: характеризуется повышением уровня экспрессии при вирусных и понижением при алкогольном гепатитах; полиморфный вариант (rs3212220 G/T) гена ассоциирован с АБП; полиморфный вариант (A1188C) ассоциирован с ХВГС, тяжестью его течения, протромбиновым индексом; понижением содержания в сыворотке крови IFN-γ и IL4 и повышением содержания IL12.

Список работ, опубликованных по теме диссертации

- 1. Гончарова И. А., Рачковский М.И., Белобородова Е. В., **Х. Гамаль Абд Ель-Азиз Наср**, Пузырев В. П. Патогенетика цирроза печени: полиморфизм генов глутатион S-трансфераз // Молекулярная биология. 2010. Т. 44. № 3. С. 431–438.
- 2. Гончарова И.А., **Х. Гамаль Абд Ель-Азиз Наср**, Белобородова Е.В., Ожегова Д.С., Степанов В.А., Пузырев В.П. Полиморфизм геновмодификаторов иммунного ответа при заболеваниях печени различной этиологии // Медицинская генетика. 2010. №12. С.
- 3. Гончарова И.А., Ожегова Д.С., **Х. Гамаль Абд Ель-Азис Наср**, Белобородова Е.В., Пузырев В.П. Структурно-функциональная характеристика полиморфных вариантов генов IFNG(T-1488C) и IFNGR2 (G-1704/del) при инфекционных заболеваниях / Материалы VI Съезда Российского общества медицинских генетиков. Ростов-на-Дону, 14-18 мая 2010 г. С.47.