Наименование	Полногеномная диагностика микроделеционных / микродупликационных синдромов
услуги	и хромосомных аномалий на ДНК-микрочипах
Код услуги	A 27.30.240
Краткая	К основным показаниям для проведения полногеномной диагностики хромосомных
информация о	аномалий на ДНК-микрочипах относят задержку физического, психомоторного,
заболевании	речевого и интеллектуального развития, наличие у ребенка множественных
	врожденных пороков развития, подозрение на хромосомную болезнь по
	клинической симптоматике (изменение формы и размеров черепа; изменение вида
	лица и его пропорций; аномалии конфигурации и расположения лба; аномалии глаз,
	подбородка, носа, ушных раковин, челюсти; внешних гениталий; изменения пальцев;
	изменения кожи и кожных придатков и др.), наличие неврологической симптоматики
	(гипотонии, эпилептических приступов, нистагма д.р.), нарушение репродуктивной
	функции неясного генеза у мужчин и женщин.
Информация о	Полногеномная диагностика микроделеционных / микродупликационных синдромов
методе.	и хромосомных аномалий на ДНК-микрочипах (array comparative genomic
	hybridization, aCGH) – современный метод молекулярно-генетической диагностики,
	позволяющий находить несбалансированные микроструктурные хромосомные
	перестройки, которые не могут быть выявлены стандартными методами световой
	микроскопии.
	Суть метода матричной сравнительной геномной гибридизации заключается в том,
	что для анализа используют равные количества опытной ДНК, полученной от
	пациента, и стандартной контрольной ДНК. Опытная и контрольная ДНК метятся
	разными флюоресцентными красителями, после чего их смешивают между собой и
	наносят на микрочип – специальное стекло, к которому ковалентно пришиты
	небольшие последовательности ДНК (ДНК-зонды), с которыми гибридизуется ДНК
	опытной и контрольной проб. Далее микрочип сканируют на флюоресцентном
	сканере для получения количественной оценки сигнала флюоресценции,
	соответствующей количеству ДНК. Соотношение двух флюорофоров в каждой точке
	чипа свидетельствует о наличие или отсутствии хромосомной мутации в данном
	хромосомном локусе.
	Технология aCGH обладает более высокой разрешающей способностью по
	сравнению со стандартным кариотипированием. Тем не менее, она не позволяет
	врачу-лабораторному генетику диагностировать генные мутации, сбалансированные
	хромосомные аберрации (инверсии, сбалансированные транслокации, геномные
	мутации), а также не способна детектировать низкоуровневый мозаицизм (менее
	30%).
Требование к	Для выполнения анализа используется кровь, взятая из локтевой вены в пробирку с
материалу	ЭДТА в количестве 4 мл. Кровь берется независимо от приема пищи.
Срок выполнения	15 рабочих дней